OpenFOAM
A little User-Manual

Gerhard Holzinger
CD-Laboratory - Particulate Flow Modelling
Johannes Kepler University, Linz, Austria
http://www. jku.at/pfm/

27th January 2016

Abstract

This document is a collection of my own experience on learning and using OpenFOAM. Herein knowledge
and background information is assembled that may be useful when learning to use OpenFOAM.

WARNING:

During the assembly of this manual OpenFOAM and other tools, e.g. pyFoam, have been continuously
updated. This manual was started with OpenFOAM-2.0.x installed and at the time being the author works
with OpenFOAM-2.2.x, OpenFOAM-2.3.x and the development version OpenFOAM-dev. Consequently it
is possible that some facts or listings my be outdated by the time you read this. Furthermore, functionalities
may have been extended or modified. Nevertheless, this manual is intended to cast some light on the inner
workings of OpenFOAM and explain the usage in a rather practical way.

All informations contained in this manual can be found in the internet (http://www.openfoam.org,
http://www.cfd-online.com/Forums/openfoam/) or they were gathered by trials and error (What happens

if ...?).

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

http://www.jku.at/pfm/
http://www.openfoam.org
http://www.cfd-online.com/Forums/openfoam/

Contents
Getting help

Lessons learned

2.1 Philosophy e
2.2 Learning by using OpenFOAM L L oo
2.3 Learning by tinkering with OpenFOAM

I Installation

Install OpenFOAM

3.1 Prerequistes L e
3.2 Download the sources e
3.3 Compile the sources L e
3.4 Install paraView oL
3.5 Remove OpenFOAM e
3.6 Install several versions of OpenFOAM

Updating the repository release of OpenFOAM

4.1 Version managemento e e
4.2 Check for updates L
4.3 Check for updatesonly
4.4 Install updates
4.5 Problems with updates Lo
Install third-party software

5.1 Imstall pyFoam e
5.2 Install swakdfoam oL o
5.3 Compile external libraries L L L L

ITI General Remarks about OpenFOAM

Units and dimensions

6.1 Unit inspection L
6.2 Dimensionens e e
6.3 Kinematic viscosity vs. dynamic viscosity 0oL
6.4 Pitfall: pressure vs. pressureo e e e

Files and directories

7.1 Required directories L L e
7.2 Supplemental directories L L
7.3 Filesin system e

Controlling OpenFOAM

8.1 The means of exerting control oLl
8.2 Syntax of the dictionaries L L
8.3 The controlDict o i e e e
8.4 Run-time modifcations of dictionaries Lo
8.5 The fvSolution dictionary L
8.6 Command line arguments L Lo L

Usage of OpenFOAM

9.1 Use OpenFOAM
9.2 Abort an OpenFOAM simulation L oL
9.3 Terminate an OpenFOAM simulation
9.4 Continue a simulation L L Lo
9.5 Do parallel simulations with OpenFOAM
9.6 Using tools

IITI Pre-processing

10

11
11
12
12

14

14
14
14
15
15
15
16

16
16
17
17
18
18

19
19
19
19

20

20
20
21
22
22

23
23
24
24

25
25
26
28
32
33
33

34
34
36
36
40
40
44

45

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

10 Geometry creation & other pre-processing software
10.1 blockMesh e
10.2 CAD software o . o e e e e
10.3 Salome L
10.4 GMSH L

11 Meshing & OpenFOAMs meshing tools
11.1 Basics of the mesh e
11.2 Converters o i e e
11.3 Mesh manipulation L

12 blockMesh
12.1 The block o
12.2 The blockMeshDict o . o v v vttt it e e e e e e
12.3 Create multiple blocks e
12.4 Grading
12.5 Parametric meshes by the help of m4 and blockMesh
12.6 Trouble-shooting e

13 snappyHexMesh
13.1 Documentation L
13.2 Work flow o e
13.3 Example: Bath Tub

14 foamyHexMesh
14.1 Crude comparison between a snappy and a foamy bath tub

15 checkMesh
15.1 Definitions e e
15.2 Pitfalls e
15.3 Useful output o oL

16 Other mesh manipulation tools
16.1 topoSet e e e e e
16.2 setsToZones v v e e e e e e
16.3 refineMesh oL e
16.4 renumberMesh e e e
16.5 subsetMesh e
16.6 createPatch e e e e e e e e
16.7 stitchMesh e e

17 Initialize Fields
17.1 Basics e
17.2 setFields 0 e e e e
17.3 mapFields o e e

18 Case manipulation
18.1 changeDictionaryo

19 Turbulence-Models
19.1 Organisation e e e e e
19.2 Categories e
19.3 RAS-Models e
19.4 LES-Models e
19.5 Pitfalls L e

45
45
45
46
46

46
46
47
48

48
48
49
55
57
60
63

64
64
64
65

67
68

69
69
75
78

78
78
79
80
80
83
83
83

83
83
84
86

89
90

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

20

21

22

23

24

25

26

Eulerian multiphase modelling

20.1 Phase modelclass
20.2 Phase system classes
20.3 Turbulence modelling
20.4 Interfacial momentum exchange
20.5 Diameter models

Boundary conditions

21.1 Base typeso o
21.2 Primitive typeso
21.3 Derived types oo
21.4 Pitfallso
21.5 Time-variant boundary conditions

The Lagrangian world

22.1 Background Lo Lo
22.2 Libraries oo
22.3 Cloudy, with a chance of particles.
224 Timesof Use

Solution Algorithms

23.1 SIMPLE
232 PISO.o

pimpleFoam

24.1 Governing equations

24.2 The PIMPLE Algorithm — or, what’s under the hood?

twoPhaseFEulerFoam

25.1 General remarkso
25.2 Solver algorithm
25.3 Momentum exchange between the phases
25.4 Kinetic Theory,

twoPhaseFEulerFoam-2.3

26.1 Physics
26.2 Naming scheme0,
26.3 Solver capabilities 0.
26.4 Turbulence models
26.5 Energy equation00
26.6 Momentum equation
26.7 Interfacial interaction
26.8 Interfacial momentum exchange
26.9 MRF method - avoiding errors

27 multiphaseFEulerFoam

28

271 Fields oo oo
27.2 Momentum exchange

drift FluxFoam

28.1 Governing equations
28.2 incompressibleTwoPhaseInteractingMixture
28.3 Mixture viscosity models
28.4 Relative velocity models - hindered settling
28.5 settlingFoam oL

VI Postprocessing

104
105
110
112
112
113

115
115
116
116
116
117

118
118
119
120
122

124

124
124
126

126
126
128

133
133
134
136
139

139
139
139
140
140
146
147
149
152
158

159
159
159

160
160
163
163
164
166

168

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

29 functions 168

29.1 Definitiono e 168
29.2 probeso o e e e 169
29.3 fieldAverageo e 170
204 faceSource e e e 171
29.5 cellSource e 172
29.6 Execute C++ code as functionObject Lo 173
29.7 Execute functions after a simulation has finished 174

30 sample 175
30.1 Usage oo 175
30.2 sampleDicto e e e e e 175
31 ParaView 177
31.1 View themesh 177
VII External Tools 179

32 pyFoam 179
32.1 Imstallation L e e 179
32.2 pyFoamPlotRunner e e 179
32.3 pyFoamPlotWatcher e e 179
32.4 pyFoamClearCase o e e e e 184
32.5 pyFoamCloneCase e 184
32.6 pyFoamDecompose o e e e e e e e e 184
32.7 pyFoamDisplayBlockMesh e 185
32.8 pyFoamCaseReport e e e e e 186
33 swak4foam 186
33.1 Imstallation oL oL 186
33.2 simpleSwakFunctionObjects e e e 187
34 blockMeshDG 188
34.1 Imstallation oL oL 188
34.2 Usage 188
34.3 Pitfalls e 188
35 postAverage 189
35.1 Motivation L e e 189
35.2 Source code e 189
VIII Updates 197

36 General remarks 197
37 OpenFOAM 197
37.1 OpenFOAM-2.1.X o o o e e e 197
37.2 OpenFOAM-2.2.X L o e 197
37.3 OpenFOAM-2.3.X o o 197
IX Source Code & Programming 199

38 Understanding some C and C++ 199
38.1 Definition vs. Declaration 199
38.2 Namespaces oL e 199
38.3 const COrTECtnNesso e e e e e e e 200
38.4 Function inliningo 201
38.5 Constructor (de)construction L L 202
38.6 Object orientation 204
38.7 Templates L 204

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

39 Under the hood of OpenFOAM 205
39.1 Solver algorithms e 206
39.2 NameSPaCes v v v v v e e e e e e e e e e e 206
39.3 Keyword lookup from dictionary 206
39.4 OpenFOAM specific datatypes e 209
39.5 Time management 214
39.6 Theregistry e 223
39.7 I/O -input & output 227
39.8 Turbulence models L 231
39.9 Debugging mechanism 0oL 233
39.10A glance behind the run-time selection and debugging magic 235

40 General remarks on solver modifications 239
40.1 Preparatory tasks 239
40.2 The next steps o L L 239

41 twoPhaseLESFEulerFoam 240
41.1 Preparatory tasks 240
41.2 Preliminary observations 241
41.3 How LES in OpenFOAM is used it 242
41.4 Integrate LES o L 243
41.5 Compile e 245

X Theory 246

42 Discretization 246
42.1 Temporal discretization L L e 246
42.2 Spatial discretization 246
42.3 Continuity error correction Lo e 246

43 Momentum diffusion in an incompressible fluid 249
43.1 Governing equations Lo 249
43.2 Implementation L 249

44 The incompressible k-¢ turbulence model 250
44.1 The k-¢ turbulence model in literature 250
44.2 The k-e turbulence model in OpenFOAM oL 251
44.3 The k-e turbulence model in bubbleFoam and twoPhaseFulerFoam 253
44.4 Modelling the production of turbulent kinetic energy 254

45 Some theory behind the scenes of LES 258
45.1 LES model hierarchy L 258
45.2 Eddy viscosity models Lo 259

46 The use of phi 263
46.1 The question L e 263
46.2 Implementation e 263
46.3 The math o o 265
46.4 SUMIMATY v v v et et e e e e e e e e e e e e e e e e 266

47 Derivation of the IATE diameter model 266
47.1 Number density transport equation Lo 267
47.2 Interfacial area transport equationo Lo 267
47.3 Interfacial curvature transport equationo 269
47.4 Interaction models L 271
47.5 Appendix 275

48 Derivation of the MRF approach 277
48.1 Preliminary observations L Lo 277
48.2 Mass conservation equationo Lo e 277
48.3 Momentum conservation equationo Lo Lo 278
48.4 Notes on the implementation of the MRF Approach 279

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

XI Appendix 281

49 Useful Linux commands 281
49.1 Getting help o L 281
49.2 Finding files oL 281
49.3 Find files and scan them 282
49.4 Scan alog file L 282
49.5 Running in scripts oL 283
49.6 diff . . . L e 284
49.7 Case SetUP . « v« v v i e e e e e e 284
49.8 Miscellaneous L 285

50 Archive data 285

Bibliography 287
List of Abbreviations 290

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

List of Figures

IENGUR R

o 3 & Ot

11
12
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
o0

The STL mesh of a circular area generated by OpenSCAD 46
The top face of the generic block of Figure 3 o oL 47
The generic block oL 49

A block with a poly-line at the left side. The red line indicates the poly-line. This figure makes
it obvious that edges defines in the blockMeshDict serve to compute the locations of the block’s

internal nodes. The block itself however, does not obey the poly-line. 53
The mesh of two merged blocks L 95
The mesh of two merged blocks. 56
Two connected blocks 56
Two unconnected blocks 57
The mesh of a stirred tank with a Rushton impeller, stator baffles and an aeration device. 63
The blocks of a parametric mesh consisting of nine blocks. 64
A bath tub. The outlet patch is marked grey at the very bottom of the drain tube. 65
A badly chosen featureAngle causes snappy to add incomplete boundary layers. 66

The boundary layers added by snappy. On the left, layer addition went as we intended it to do; on
the right, we see the effect of the (missing) keyword slipFeatureAngle of the addLayersControls

dictionary of snappyHexMeshDict. 66
A collapsing boundary layer. Maybe we did not want the mesh that way, however, we told snappy

to create it exactly that way. L Lo 67
A bath tub with a background mesh enclosing the STL-surface of the bath tub. 68
SnappyBathTub o 68
FoamyBathTub 0. o 69
Definition of non-orthogonality for internal faces 70
Definition of non-orthogonality for boundary faces 71
Definition of skewness of internal faces oL 72
Definition of skewness of boundary faces oo oL 73
Face warpage L oL e 75
A distorted mesh oL e 76
Sets created by checkMesh in the sets directory. L oL 78
A faulty cell set definition. The red cells are part of the cell set. All other cells are blue. 79
An example of a refined mesh. The refined region is marked inred. 80
A simple mesh with 8 cells and different cell labelling schemes. 81
The connectivity graph of our mesh. Lo 81
The matrix structure of the connectivity graph of Figure 28 82
Scrambled cell sets caused by mesh renumbering oo L 83
The mapped field 89
The unmapped fields 90
Established flow and modified boundary condition 92
The class hierarchy of the basis of the old turbulence model framework. 94
The class hierarchy of the basis of the new turbulence model framework. 95
The (templated) class hierarchy of the new turbulence model framework.. 96
The class hierarchy of the elementary turbulence models of the new turbulence model framework. 97
The class hierarchy of a selection of turbulence models of the new turbulence model framework. . 98
Modelling approach on the example of a gas-liquid two-phase system. 105
Modelling approach on the example of a gas-liquid two-phase system. 113
Schematic diagrams of doubly-linked lists. L oo 122
The class hierarchy needed for intrusive lists of objects of type T; 122
Flow chart of the SIMPLE algorithm 124
Flow chart of the PISO algorithm 126
Flow chart of the PIMPLE algorithm 130
Flow chart of the main loop of twoPhaseFulerFoam 135
Flow chart of the operations in alphaEqn.H 137
Air volume fraction of the bubble column. Initial field (left) and solution at ¢ = 10s (right). . . . 146
Linear blending: f1 over cv. oL e 152
Hyperbolic blending: f1 over av o . e 152

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

o1

52
23
o4
%)
56
o7
58
99
60
61
62
63
64
65
66
67
68
69

Velocity vectors of the gaseous phase at the inlet boundary (red vectors) in an aerated stirred
tank. That the gas inlet boundary lies within the MRF zone. On the left, we see the initial
condition and on the right we see the boundary condition after the constraints by the MRF

method have been applied. 159
A part of the directory tree after the simulation ended, 170
The content of the postProcessing folder 172
Directory tree after compilation of a coded functionObject 174
Select the proper representation to view themesh oo 178
The Courant number plotted with pyFoamPlotWatcher. 180
The Courant number based on the relative velocity plotted with pyFoamPlotWatcher 181
The average volume fraction plotted with pyFoamPlotWatcher and a custom regular expression . 183
The execution time plotted over time with pyFoamPlotWatcher. 184
Screenshot of pyFoamDisplayBlockMesh 186
Double grading problemo 189
The three arguments of Eq. (136) plotted over x 217
A partial view of the class hierarchy involving regIOobject;. 224
The base classes of the class objectRegistry;. L. 225
Graphic representation of inheritance of the turbulence model classes. 232
Inheritance of RAS turbulence models L L 233
First layer of the class hierarchy of the LES models of OpenFOAM 259
Class hierarchy of the eddy viscosity models in OpenFOAM 260
A screenshot of Meld e 284

List of Tables

© 00 3O Utk W=

Run-time cavity test case oL 34
Comparison of hard disk space consumption L Lo 36
Valid and invalid face definitions L. L 48
Overview of diameter modelling in Eulerian multiphase solvers 113
Levels of coupling between Lagrangian particles and (Eulerian) flow 118
Naming scheme of quanities of twoPhaseEulerFoam 197
Comparison of the eddy viscosity models of OpenFOAM 260
Comparison of disk space reduction L 286
Comparison of disk space reduction L L 286

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

1

Getting help

Apart from this manual, there are lots of resources on the internet to find help on OpenFOAM.

The OpenFOAM User Guide
http://www.openfoam.org/docs/user/

The CFD Online Forum
http://www.cfd-online.com/Forums/openfoam/

The OpenFOAM Wiki

http://openfoamwiki.net/index.php/Main_Page

The OpenFOAM Wiki is maintained by a community of developers behind the OpenFOAM-extend project.
This wiki covers not only the OpenFOAM but also tools that developed for OpenFOAM, e.g. pyFoam or
swak4foam.

The CoCoons Project
http://www.cocoons-project.org/
This is a community driven effort to create a documentation on solvers, utilities and modelling.

The materials of the course CFD with open source software of Chalmers University
http://www.tfd.chalmers.se/~hani/kurser/0S_CFD/

The CAELinux Wiki

http://caelinux.org/wiki/index.php/Doc:0penF0AM

CAELinux is a collection of open source CAE software including several CFD codes (OpenFOAM,
Code_ Saturne, Gerris, Elmer).

Q&A on the internets

You can find questions — and hopefully answers — on the various Q&A sites on the internets, such as
StackExchange (http://stackexchange.com/), which is a collection of Q&A site specific to a topic or
region of interest.

There, a site specific to OpenFOAM is currently proposed and is in need of participation.
http://areabl.stackexchange.com/proposals/88229/openfoam-technology

Currently, OpenFOAM questions tend to get posted on the Computational Science Q&A site .
http://scicomp.stackexchange.com/

Word of mouth
https://github.com/ParticulateFlow/0SCCAR-doc/blob/master/openFoamUserManual_PFM.pdf
This is where this manual is hosted.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 10

http://www.openfoam.org/docs/user/
http://www.cfd-online.com/Forums/openfoam/
http://openfoamwiki.net/index.php/Main_Page
http://www.cocoons-project.org/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/
http://caelinux.org/wiki/index.php/Doc:OpenFOAM
http://stackexchange.com/
http://area51.stackexchange.com/proposals/88229/openfoam-technology
http://scicomp.stackexchange.com/
https://github.com/ParticulateFlow/OSCCAR-doc/blob/master/openFoamUserManual_PFM.pdf

2 Lessons learned

2.1

Build the source-code documentation of your local installation. It is located e.g. in $HOME/OpenFOAM/
OpenF0AM-2.3.x/doc/Doxygen if you installed OpenFOAM in your home directory. This makes you
independent of being online and the doxygen gives you e.g. a very well-structured overwiew of a classes
methods and members.

Study the code. Even as “the documentation is in the code” does not sound helpful at all, the code in
fact tells you what is going on provided you are able to make sense of the C++4 syntax. Become familiar
with basic concepts of object-oriented (OO) software design.

The more I used and tinkered with OpenFOAM, the more I am convinced that its design is really ingenious.
However, it takes time and effort to come to this conclusion. It is also probably a matter of taste.

Document your own work and stuff you tried. There is no need to create hundreds of pages, but paper or
dead electrons have a longer memory as mere mortal humans. Furthermore, the fact “I have already tried
X at some point in the past, and I wrote it down at Y” is more likely to be remembered than “I tried X,
and that’s how it went in all detail”.

Philosophy

OpenFOAM is largely following the general rules of the UNIX philosophy — see e.g. Eric S. Raymond [14] or
http://www.catb.org/esr/writings/taoup/html/ch01s06.html — by accident, by design or by law.

1.

A

10.

11.

Rule of Modularity: Write simple parts connected by clean interfaces.
We see this rule in action, when we take a look at all the small pre- and post-processing

Rule of Clarity: Clarity is better than cleverness.

Rule of Composition: Design programs to be connected to other programs.

Rule of Separation: Separate policy from mechanism; separate interfaces from engines.
Rule of Simplicity: Design for simplicity; add complexity only where you must.

Rule of Parsimony: Write a big program only when it is clear by demonstration that nothing else will do.
Again, OpenFOAM is a large collection of specialized tools, rather than a big monolithic — one size fits
nobody — monster.

Rule of Transparency: Design for visibility to make inspection and debugging easier.

Here, we quote Eric S. Raymond': “A software system is transparent when you can look at it and
immediately understand what it is doing and how.” CFD is admittedly very complex, however, the close-
to-mathematical notation of OpenFOAM’s high-level code, can be seen as an example of OpenFOAM’s
obedience to the Rule of Transparency.

Rule of Robustness: Robustness is the child of transparency and simplicity.

Rule of Representation: Fold knowledge into data so program logic can be stupid and robust.

Although this rule was stated without object-orientation in mind, we can observe, that OpenFOAM’s data
structures and classes absorb much of the complexity. Thus, the top level solver source code looks quite
unspectacular.

Rule of Least Surprise: In interface design, always do the least surprising thing.
We see this rule in action, when we look at all the shared command line options. All tools that support
time selection offer common options, such as latestTime or noZero.

Rule of Silence: When a program has nothing surprising to say, it should say nothing.

This rule is obeyed by most function objects, which provide the user with the choice of deactivating
writing to the Terminal. This output may be useful during testing. As soon as the case is properly set up,
however, it is sufficient for the function object to write its output to the corresponging file in the folder
postProcessing.

Ihttp://wuw.catb.org/esr/writings/taoup/html/ch01s06.html

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 1

http://www.catb.org/esr/writings/taoup/html/ch01s06.html
http://www.catb.org/esr/writings/taoup/html/ch01s06.html

12.

13.

14.

15.
16.

17.

2.2

2.3

Rule of Repair: When you must fail, fail noisily and as soon as possible.
Ever noticed the FOAM FATAL ERROR messages?

Rule of Economy: Programmer time is expensive; conserve it in preference to machine time.

If we allow ourselves a very broad view of this rule, we might postulate, that OpenFOAM’s mechanism to
specify default values for keywords? is one example for following this rule from a user’s perspective, i.e.
it is the user’s time which is conserved.

Rule of Generation: Awvoid hand-hacking; write programs to write programs when you can.

We can see the heavy use of templates as an example of OpenFOAM following the Rule of Generation.
The TurbulenceModels framework® is an example of a modelling framework, which is coded once and
applied in several different incarnations.

However, this applies only in a wider sense, since this rule was stated not with C++’s templates in mind.

Rule of Optimization: Prototype before polishing. Get it working before you optimize it.

Rule of Diversity: Distrust all claims for “one true way”.
OpenFOAM offers the user plenty of choice such as the solvers to use, the solution algorithms, and
discretisation and interpolation schemes.

Rule of Extensibility: Design for the future, because it will be here sooner than you think.

OpenFOAM sometimes exhibits a different behaviour based on its version, or the format of the input files.
See Section 21.4.1 for an example on differences in the input syntax of fixedValue boundary conditions.
The important lesson in this case is to allow for evolution of the code without breaking compatibility.

Learning by using OpenFOAM

Numerical errors can ruin your day in CFD. Not every simulation crash is the fault of some bug in
OpenFOAM. The numerics of CFD is also keen to crash simulations.

Never deactivate the unit checking of OpenFOAM.

Many classes provide optional debug information. Debug flags can be controlled via a global controlDict
as well as the case’s controlDict.

Play around! A great part of learning is trial and error. Although many of us regard themselves as
scientists or aspire to become scientists, never disregard the value of plain trail and error.

Learning by tinkering with OpenFOAM

2.3.1 I learned something today.

Have a look at the test directory in the applications folder of your installation, e.g. in $HOME/OpenF0AM/
OpenFOAM-2.3.x/applications/test. There, you find examples of how to use certain data structures,
which may be exactly what you need when implementing something.

Create your own test application, if you are about to implement something new. With a test application,
you can keep the problem nearly primitive, thus, allowing yourself more mental freedom to explore and
to learn. Later, you might be more likely to implement your solver / library with less bugs and errors.

OpenFOAM makes heavy use of C++’s language features and other smart moves in OO software design.
Thus, make sure you understand the basics of the following concepts / language features before you try
to study / modify the code of OpenFOAM. Your life gets easier if you do.

inheritance virtually everything of OpenFOAM is described and implemented using the concept of classes.

Classes can be derived from other classes to implement an is a relationship, i.e. every cat is an animal
but not vice versa.

Note: C++ support multiple inheritance, i.e. a class can be derived from a number of classes, not just
one. Other programming languages are (slightly) different in this aspect, e.g. Java allows you to derive
only from one class, however, you can implement interfaces.

2See Section 39.3.2
3See Section 19.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 12

poly-morphism this concept is closely related to inheritance.

templates allow the user to write code for as-of-yet unspecified data types. Container classes are the prime
example for the use of templates (or generics as this concept is called in Java).

Examples of the excellent use of the aforementioned concepts is the turbulence modelling framework discussed
in Section 19.1.2, or the lagrangian modelling framework discussed in Section 22.2.

2.3.2 Trouble with the code?

it does not compile

¢ Due to the heavy use of templates the syntax and the compiler error messages are quite lengthy and often
hard to read. However, the compiler error message might contain exactly the information you need to
track down the error, e.g. a data-type mismatch. Familiarize yourself with C++’s syntax if you haven’t
already.

it does not run

e Spurious crashes (e.g. caused by floating point errors) may be an indication of class members being
un-initialized.

e No offence, but it’s most probably your fault.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 13

Part 1
Installation

3 Install OpenFOAM

3.1 Prerequistes

OpenFOAM is easily installed by following the instructions from this website: http://www.openfoam.org/
download/git.php.

First of all, you need to make sure all required packages are installed on your system. This is easily done
via the package management software. OpenFOAM is a software made primarily for Linux systems. It can also
be installed on Mac or Windows plattforms. However, the authors uses a Ubuntu-Linux system, therefore this
manual will be based on the assumption that a Linux system is used.

sudo apt-get install git-core

sudo apt-get install build-essential flex bison cmake zliblg-dev qt4-dev-tools libqté4-dev
gnuplot libreadline-dev libxt-dev

sudo apt-get install libscotch-dev libopenmpi-dev

Listing 1: Installation of required packages

If OpenFOAM is to be used by a single user, then the User Manual suggests to install OpenFOAM in the
$HOME/OpenFO0AM directory.

3.2 Download the sources

First of all the source files need to be downloaded. This is done with the version control software Git. After-
wards we change into the new directory and check for updates. All steps to perform the described operations
are listed in Listing 2.

cd $HOME

mkdir OpenFOAM

cd OpenFOAM

git clone git://github.com/OpenFOAM/0OpenFOAM-2.1.x.git
cd OpenFOAM-2.1.x

git pull

Listing 2: Installation von openFOAM

Prior to compiling the sources some environment variables have to be defined. In order to do that a line (see
Listing 3) has to added to the file $HOME/ .bashrec.

source $HOME/OpenFOAM/OpenF0AM-2.1.x/etc/bashrc

Listing 3: Addition to .bashrc

When the command source $HOME/.bashrc is issued or when a new Terminal is opened this change is
effective. Now with the defined environment variables OpenFOAM can be installed on the system. Before
compiling a system check can be made by running foamSystem Check.

user@host :~/0OpenFO0AM/0OpenFO0AM-2.1.x$ foamSystemCheck
Checking basic system... —————=—--=--———-——--———————————————-

Shell: /bin/bash

Host: host

0S: Linux version 2.6.32-39-generic
User: user

System check: PASS

Continue OpenFOAM installation.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 14

http://www.openfoam.org/download/git.php
http://www.openfoam.org/download/git.php

Listing 4: foamSystemCheck

3.3 Compile the sources

If the system check produced to error messages then OpenFOAM can be compiled. This is done by executing
./Allumake. This is an installation script that takes care of all required operations. Compiling OpenFOAM
can be done by using more than one processor to save time. In order to do this, an environment variable needs
to be set before invoking ./Allwmake. Listing 5 shows how to compile OpenFOAM using 4 processors.

export WM_NCOMPPROCS=4
./Allwmake

Listing 5: Parallel kompilieren

For working with OpenFOAM a user directory needs to be created. The name of this directory consists of
the username and the version number of OpenFOAM. With version 2.1.x this folder needs to be named like
this: user-2.1.x

3.4 Install paraView

paraView is a post processing tool, see http://www.paraview.org/. The OpenFOAM Foundation distributes
para View from its homepage and recommends to use this version. The source code can be downloaded from
http://www.openfoam.org/ in an archive, e.g. ThirdParty-2.1.0.tgz. This archive has to be unpacked into
a folder named correspondingly to the OpenFOAM directory, e.g. ThirdParty-2.1.x when OpenFOAM-2.1.x
is used. This naming scheme is mandatory because there is an environment variable that points to the location
of paraView. As there is no development of paraView by the OpenFOAM developers, there is no repository
release of third-party tools.

Subsequently para View can be compiled by the use of an installation script. Afterwards some plug-ins for
para View need to be compiled.

cd $WM_THIRD_PARTY_DIR
./makeParaView

cd $FOAM_UTILITIES/postProcessing/graphics/PV3Readers
wmSET

./Alluclean

./Allwmake

Listing 6: Installation of para View

3.5 Remove OpenFOAM

If OpenFOAM is to be removed from the system, then a few simple operations do the job*, provided the
installation was done following the installation guidelines of OpenFOAM?®.

Listing 7 shows how OpenFOAM can be removed from the system. We assume, we want to remove an
installation of OpenFOAM-2.0.1. The first line changes the working directory to the installation directory of
OpenFOAM. This folder contains all files of the OpenFOAM installation. Listing 8 shows the content of the
~/0penFOAM. In this example, two versions of OpenFOAM are installed.

The second line removes all files of OpenFOAM and the third line removes the files of the user related to
OpenFOAM. The last line of Listing 7 removes a hidden folder. If there are several versions of OpenFOAM
installed, then this folder should not be removed.

“http://www.cfd-online.com/Forums/openfoam-installation/57512-completely-remove-openfoam-start-fresh.html
Shttp://www.openfoam.org/download/git .php

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 15

http://www.paraview.org/
http://www.openfoam.org/
http://www.cfd-online.com/Forums/openfoam-installation/57512-completely-remove-openfoam-start-fresh.html
http://www.openfoam.org/download/git.php

cd ~/0penF0AM

rm -rf OpenFOAM-2.0.1
rm -rf user-2.0.1

cd

rm -rf ~/.0penF0AM

Listing 7: Removing OpenFOAM

cd ~/0penF0AM
1s -1
user-2.0.x
user-2.1.x
OpenF0OAM-2.0.
OpenF0AM-2.1.
ThirdParty-2.
ThirdParty -2.

= O W M
M

Listing 8: Content of ~/0penF0AM

Another thing to remove is the entry in the .bashrc file in the home directory. Delete the line shown in
Listing 3.

3.6 Install several versions of OpenFOAM

It is possible to install several versions of OpenFOAM on the same machine. However due to the fact that Open-
FOAM relies on some environment variables some precaution is needed. See http://www.cfd-online.com/
Forums/blogs/wyldckat/931-advanced-tips-working-openfoam-shell-environment.html for detailed in-
formation about OpenFOAM and the Linux shell.

The most important fact about installing several versions of OpenFOAM is to keep the seperated.

4 Updating the repository release of OpenFOAM

4.1 Version management

OpenFOAM is distributed in two different ways. There is the repository release that can be downloaded using
the Git repository. The version number of the repository release is marked by the appended x, e.g. OpenFOAM
2.1.x. This release is updated regularly and is in some ways a development release. Changes and updates are
released quickly, however, there is a larger possibility of bugs in this release. Because this release is updated
frequently an OpenFOAM installation of version 2.1.x on one system may or will be different to another instal-
lation of version 2.1.x on an other system. Therefore, each installation has an additional information to mark
different builds of OpenFOAM. The version number is accompanied by a hash code to uniquely identify the
various builds of the repository release, see Listing 9. Whenever OpenFOAM is updated and compiled anew,
this hash code gets changed. Two OpenFOAM installations are on an equal level, if the build is equal.

Build : 2.1.x-9d344f6ac6af

Listing 9: Complete version identification of repository releases

Apart from the repository release there are also pack releases. These are upadated periodically in longer
intervals than the repository release. The version number of a pack release contains no x, e.g. OpenFOAM
2.1.1. In contrast to the repository release all installations of the same version number are equal. Due to the
longer release cycle the pack release is regarded to be less prone to software bugs.

There are several types of those releases. The are precompiled packages for widely used Linux distributions
(Ubuntu, SuSE and Fedora) and also a source pack. The source pack can be installed on any system on which
the source codes compile (usually all kinds of Linux running computers, e.g. high performance computing
clusters, or even computers running other operation systems, e.g. Mac OSX® or even Windows").

6See http://openfoamwiki.net/index.php/Howto_install_OpenFOAM_v21_Mac
7See http://openfoamwiki.net/index.php/Tip_Cross_Compiling_OpenFOAM_in_Linux_For_Windows_with_MinGW

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 16

http://www.cfd-online.com/Forums/blogs/wyldckat/931-advanced-tips-working-openfoam-shell-environment.html
http://www.cfd-online.com/Forums/blogs/wyldckat/931-advanced-tips-working-openfoam-shell-environment.html
http://openfoamwiki.net/index.php/Howto_install_OpenFOAM_v21_Mac
http://openfoamwiki.net/index.php/Tip_Cross_Compiling_OpenFOAM_in_Linux_For_Windows_with_MinGW

4.2 Check for updates

If OpenFOAM was installed from the repository release, updating is rather simple. To update OpenFOAM
simply use Git to check if there are newer source files available. Change in the Terminal to the root directory
of the OpenFOAM installation and execute git pull.

If there are newer files in the repository Git will download them and display a summary of the changed files.

user@host :~$ cd $FOAM_INST_DIR

user@host :~/0penFO0AM$ cd OpenFOAM-2.1.x

user@host :~/0OpenFOAM/0OpenFOAM-2.1.x$ git pull

remote: Counting objects: 67, done.

remote: Compressing objects: 100% (13/13), done.

remote: Total 44 (delta 32), reused 43 (delta 31)

Unpacking objects: 100% (44/44), done.

From git://github.com/OpenFOAM/OpenFO0AM-2.1.x
72f00f7..21ed37f master -> origin/master

Updating 72f00£f7..21ed37f

Fast-forward
./extrude/extrudeToRegionMesh/createShellMesh.C | 10 +-
./extrude/extrudeToRegionMesh/createShellMesh.H | T +-
./extrudeToRegionMesh/extrudeToRegionMesh.C | 157 ++++++t+————~
./Templates/KinematicCloud/KinematicCloud.H | 6 +-
./Templates/KinematicCloud/KinematicCloudI.H | 7+

.../baseClasses/kinematicCloud/kinematicCloud.H | 47 ++++++-

6 files changed, 193 insertions(+), 41 deletions(-)

Listing 10: There are updates available

If OpenFOAM is up to date, then Git will output a corresponding message.

user@host :~/0OpenF0AM/0OpenFOAM-2.1.x$ git pull
Already up-to-date.

Listing 11: OpenFOAM is up to date

4.3 Check for updates only

If you want to check for updates only, without actually making an update, Git can be invoked using a special
option (see Listings 12 and 13). In this case Git only checks the repository and displays its findings without
actually making any changes. The option responsible for this is ——dry-run. Notice, that git fetch is called
instead of git pull &.

user@host:~$ cd OpenFOAM/OpenFOAM-2.0.x/
user@host :~/0OpenFO0AM/0OpenFOAM-2.0.x$ git fetch --dry-run -v
remote: Counting objects: 189, done.
remote: Compressing objects: 100% (57/57), done.
remote: Total 120 (delta 89), reused 93 (delta 62)
Receiving objects: 100% (120/120), 17.05 KiB, done.
Resolving deltas: 100% (89/89), completed with 56 local objects.
From git://github.com/OpenFO0AM/0OpenF0AM-2.0.x
5ae2802..97cf67d master -> origin/master
user@host :~/0penFOAM/0OpenFOAM-2.0.x$

Listing 12: Check for updates only — updates available

user@host:~$ cd OpenFOAM/OpenFOAM-2.1.x/
user@host :~/0penFO0AM/OpenF0AM-2.1.x$ git fetch --dry-run -v
From git://github.com/OpenFOAM/OpenFO0AM-2.1.x
= [up to datel master -> origin/master
user@host :~/0OpenFOAM/0OpenFOAM-2.1.x$

Listing 13: Check for updates only — up to date

8git pull calls git fetch to download the remote files and then calls git merge to merge the retrieved files with the local files.
So checking for updates is actually done by git fetch.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 17

4.4 Install updates

After updates have been downloaded by git pull the changed source files need to be compiled in order to
update the executables. This is done the same way as is it done when installing OpenFOAM. Simply call
./Allwmake to compile. This script recognises changes, so unchanged files will not be compiled again. So,
compiling after an update takes less time than compiling when installing OpenFOAM.

4.4.1 Workflow

Listing 14 shows the necessary commands to update an existing OpenFOAM installation. However this applies
only for repository releases (e.g. OpenFOAM-2.1.x). The point releases (every version of OpenFOAM without
an x in the version number) are not updated in the same sense as the repository releases. For simplicity an update
of a point release (OpenFOAM-2.1.0 — OpenFOAM-2.1.1) can be treated like a complete new installation, see
Section 3.6.

The first two commands in Listing 14 change to the directory of the OpenFOAM installation. Then the
latest source files are downloaded by invoking git pull.

The statement in red can be omitted. However if the compilation ends with some errors, this command
usually does the trick, see Section 4.5.2. The last statement causes the source files to be compiled. If wclean all
was not called before, then only the files that did change are compiled. If wclean all was invoked then
everything is compiled. This may or will take much longer.

If there is enough time for the update (e.g. overnight), then wclean all should be called before compiling.
This will in most cases make sure that compilation of the updated sources succeeds.

cd $FOAM_INST_DIR
cd OpenFOAM-2.1.x
git pull

wclean all
./Allwmake

Listing 14: Update an existing OpenFOAM installation. The complete workflow

4.4.2 Trouble-shooting

If compilation reports some errors it is helpful to call ./Allwmake again. This reduces the output of the
successful operations considerably and the actual error messages of the compiler are easier to find.

4.5 Problems with updates
4.5.1 Missing packages

If there has been an upgrade of the operating system® it can happen, that some relevant packages have been
removed in the course of the update (e.g. if these packages are only needed to compile OpenFOAM and the OS
‘thinks’ that these packages aren’t in use). Consequently, if recompiling OpenFOAM fails after an OS upgrade,
missing packages can be the cause.

4.5.2 Updated Libraries

When libraries have been updated, they have to be recompiled. Otherwise solvers would call functions that are
not (yet) implemented. In order to avoid this problem the corresponding library has to be recompiled.

wclean all

Listing 15: Prepare recompilation with wclean

The brute force variant would be, to recompile OpenFOAM as a whole, instead of recompiling a updated
library.

9An upgrade of an OS is indicated by a higher version number of the same (Ubuntu 11.04 — Ubuntu 11.10). An update leaves
the version number unchanged.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 18

4.5.3 Updated sources fail to compile

In some cases, e.g. when there were changes in the organisation of the source files, the sources fail to compile
right away. Or, if there is any other reason the sources won’t compile and the cause is not found, then a complete
recompilation of OpenFOAM may be the solution of choice. Although compiling OpenFOAM takes its time,
this may take less time than tracking down all errors.

To recompile OpenFOAM the sources need to be reset. Instead of deleting OpenFOAM and installing it
again, there is a simple command that takes care of this.

git clean -dfx

Listing 16: Reset the sources using git

The command listed in Listing 16 causes git to erase all files git does not track. That means all files that
are not part of the git-repository are deleted. In this case, this is the official git-repository of OpenFOAM. git
clean removes all files that are not under version control recursively starting from the current directory. The
option -d means that also untracked folders are removed.

After the command from Listing 16 is executed, the sources have to be compiled as described in Section 3.3.

5 Install third-party software

The software presented in this section is optional. Without this software OpenFOAM is complete and perfectly
useable. However, the software mentioned in this section can be very useful for specific tasks.

5.1 Install pyFoam

See http://openfoamwiki.net/index.php/Contrib_PyFoam#Installation for the instructions on the instal-
lation of pyFoam.

5.2 Install swak4foam

See http://openfoamwiki.net/index.php/Contrib/swak4Foam for instructions on installing swak4foam.

5.3 Compile external libraries

There is the possibility to extend the functionality of OpenFOAM with additional external libraries, i.e. libraries
for OpenFOAM from other sources than the developers of OpenFOAM. One example of such an external library
is a large eddy turbulence model from https://github.com/AlbertoPa/dynamicSmagorinsky. The source
code is stored in OpenFOAM/AlbertoPa/.

Such a library is compiled with wmake libso. This is also the case when libraries of OpenFOAM have been
modified. The reason why typing wmake libso is sufficient is because all information wmake requieres is stored
in the files Make/files and Make/options. These files tell wmake — and therefore also the compiler — where to
find necessary libraries and where to put the executable. A more detailed description of this two files can be
found in Sections 41.1.3 and 41.1.4.

To use an external library the solver needs to be told so. See Section 8.3.3.

cd OpenF0AM/AlbertoPa/dynamicSmagorinsky
wmake libso

Listing 17: Compilation of a library

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 19

http://openfoamwiki.net/index.php/Contrib_PyFoam#Installation
http://openfoamwiki.net/index.php/Contrib/swak4Foam
https://github.com/AlbertoPa/dynamicSmagorinsky

Part 11
General Remarks about OpenFOAM

6 Units and dimensions

Basically, OpenFOAM uses the International System of Units, short: SI units. Nevertheless, also other units
can be used. In that case it is important to remember, that some physical constant, e.g. the universal gas
constant, are stored in SI units. Consequently the values need to be adapted if other units that SI should be
used.

6.1 Unit inspection

OpenFOAM performs in addition to its calculations also a inspection of the physical units of all involved vari-
ables and constants. For fields, like the velocity, or constants, like viscosity, the unit has to be specified. The
unit is defined in the dimension set. Units in the International System of Units are defined as products of
powers of the SI base units.

[Q] = kg®m”s K mol°ASed” (1)

A dimension set contains the exponents of (1) that define the desired unit. With the dimension set OpenFOAM
is able to perform unit checks.

dimensions [0 1 -2 000 0];

Listing 18: False dimensions for U

--> FOAM FATAL ERROR:
incompatible dimensions for operation
(o1 -30000] 71+ [U[0O1 -40000]]

From function checkMethod (const fvMatrix<Type>&, const fvMatrix<Type>&)
in file /home/user/OpenF0AM/OpenFOAM-2.1.x/src/finiteVolume/1lnInclude/fvMatrix.C at line
1316.

FOAM aborting

Listing 19: incompatible dimensions

Listing 18 shows an incorrect definition of the dimension of the velocity, e.g. in the file 0/U. m/s? has been
defined instead of m/s. OpenFOAM recognises this false definition, because mathematical operations do not
work out anymore. Listing 19 shows a corresponding error message produced by two summands having different
units. Therefore, OpenFOAM aborts and displays an error message.

6.1.1 An important note on the base units

The order in which the base units are specified differs between OpenFOAM and many publications dealing with
ST units, compare (2) and (3). The order of the base units as it is used by OpenFOAM swaps the first two base
units. As the list of base units in [3, 2] starts with the metre followed by the kilogram, OpenFOAM reverses this
order and begins with the kilogram followed by the metre. Also the fourth, fifth and sixth base units appear in
a different position.

[Qlopenroam = kg®m?s7Kmol“AScd” (2)
[Qlst = mkg”s” A°K molcd” (3)

Eq. (2) is based on the source code of OpenFOAM, see Listing 20. Eq. (3) is based on [3, 2].

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 20

//- Define an enumeration for the names of the dimension exponents
enum dimensionType

{
MASS, // kilogram kg
LENGTH, // metre m
TIME, // second s
TEMPERATURE , // Kelvin K
MOLES, // mole mol
CURRENT, // Ampere A
LUMINOUS_INTENSITY // Candela Cd

};

Listing 20: The definition of the order of the base units in the file dimensionSet.H

The reason for changing the order of the base units may be motivated from a CFD based point of view.
For fluid dynamics involving compressible flows as well as reactive flows and combustion the first five units of
OpenFOAM’s set of base units suffice.

6.1.2 Input syntax of units

Listing 21 shows the definition of a phase in a two-phase problem. Notice the difference between the first two
definitions and the third one. The unit of d is defined by the full set of seven exponents, whereas the other two
units (rho and nu) are defined only by five exponents. Apparently it is allowed to omit the last two exponents
(defining candela and ampere).

Defining units with five entries (for kilogram, metre, second, kelvin and mol) seems to be perfectly ap-
propiate. Neither the OpenFOAM User Guide [39] or the OpenFOAM Programmer’s Guide [38] mention this
behaviour. Defining a unit with an other number of values than five or seven leads to an error (see Listing 22).

phaseb
{

rho rho [1 -3 0 0 0] 1000;

nu nu [0 2 -1 0 0] 1e-06;

d d [0100O0O0O0O7] 0.00048;
}

Listing 21: Definition of the unit

--> FOAM FATAL IO ERROR:
wrong token type - expected Scalar, found on line 22 the punctuation token ’]°

file: /home/user/OpenFO0AM/user-2.1.x/run/twoPhaseEulerFoam/bed/constant/transportProperties::
phaseb::nu at line 22.

From function operator>>(Istream&, Scalar&)
in file 1lnInclude/Scalar.C at line 91.

FOAM exiting

Listing 22: Erroneous definition of units

6.2 Dimensionens

Fields in fluid mechanics can be scalars, vectors or tensors. There are in OpenFOAM different data types to
distinguish between quantities of different dimension.

volScalarField A scalar field throughout the whole computaional domain, e.g. pressure.
volScalarField p

volVectorField A vector field throughout the whole domain, e.g. velocity.
volVectorField U

volTensorField A tensor field throughtout the whole domain, e.g. Reynolds stresses.
volTensorField Rca

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 21

surfaceScalarField A scalar field, defined on surfaces (surfaces of the finiten volumes), e.g. flux.
surfaceScalarField phi

dimensionedScalar A scalara constant throughout the whole domain (i.e. no field quantity).
dimensionedScalar nu

6.2.1 Dimension check

The data type defines also, as described before, the dimension of a quantity. The dimension of a quantity defines
the syntax how quantities have to be entered.

Listing 24 shows the error message OpenFOAM displays when the value of a scalar quantity is entered as a
vector (Listing 23).

dimensions [0O0OO0O0OOO1];
internalField uniform (0 0 0);
boundaryField
{
inlet
{
type fixedValue;
value uniform O;
}

Listing 23: Erroneous definition of «

--> FOAM FATAL IO ERROR:
wrong token type - expected Scalar, found on line 19 the punctuation token ’(’

file: /home/user/OpenFOAM/user-2.1.x/run/twoPhaseEulerFoam/bed/0/alpha::internalField at line
19.

From function operator>>(Istream&, Scalar&)
in file 1nInclude/Scalar.C at line 91.

FOAM exiting

Listing 24: Error message caused by invalid dimension

6.3 Kinematic viscosity vs. dynamic viscosity

To determine if OpenFOAM uses the kinematic viscosity [Ns/m? = Pas] or the dynamic viscosity [m?/s] one
has simply to take a look on the dimension.

nu nu [02 -100001] 0.01;

Listing 25: dimensions of the viscosity

The type of viscosity is primarily determined by the used solver, e.g. compressible or incompressible.

6.4 Pitfall: pressure vs. pressure

The definition of pressure in OpenFOAM differs between the compressible and incompressible solvers. Com-
pressible solvers work with the pressure itself. Incompressible solvers use a modified pressure. The reason for
this is, because of p = const the incompressible equations are divided by the density and to eliminate density
entirely the modified pressure is introduced into the pressure term.

S_D
p=" (4)

For this reason the entries in the 0/p files differ depending on the solver in use. This is visible by the unit of
pressure.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 22

6.4.1 Incompressible

The unit of the pressure in an incompressible solver is defined by (4)

m m kegm m m
D = — - — — —_— = —_— Y — = — 5
[P m2 kg kg s2 kg 2 (5)

dimensions [0 2 -2 00 0 0];

Listing 26: Unit of pressure - incompressible

6.4.2 Compressible

The unit of the pressure in a compressible solver is the physical unit of pressure.

N ' ke
pl=—="5= (6)

m ms?

dimensions [1 -1 -2 0000];

Listing 27: Unit of pressure - compressible

6.4.3 Pitfall: Pressure in incompressible multi-phase problems

When solving a multi-phase problem in an Eulerian-Eulerian fashion, for each phase a momentum equation is
solved. In most cases it is assumed that the pressure is equal in all phases. For this reason the incompressible
equations can not be divided by the density, because each phase has a different density and therefore, the
modified pressure would be differnt for each phase. To avoid this issue, incompressible Euler-Euler solvers, like
bubbleFoam, twoPhaseFulerFoam or multiPhaseFulerFoam, use the physical pressure like compressible solvers
do.

7 Files and directories

OpenFOAM saves its data not in a single file, like Fluent does, it uses several different files. Depending on its
purpose a specific file is located in one of several folders.

7.1 Required directories

An OpenFOAM case has a minimal set of files and directories. The directory that contains those folders is
called the root directory of the case or case directory. Listing 28 shows the output of the commands pwd and
1s when they are invoked from a case directory. The first command returns the absolute path of the current
working directory. The second command prints the contents of the current folder. When 1s is invoked without
any options it returns the names of all non-hidden files and folders. In this case there are three subdirectories
(0, constant and system). The fact that these three items are directories and not files is indicated by a different
color. If 1s is called with the option -1 are more detailed list is printed. This detailed list indicates if an entry
is a file or a directory.

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$ pwd
/home/user/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity
user@host :~/0OpenFOAM/user-2.1.x/run/icoFoam/cavity$ 1s

0 constant system

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$ 1ls -1
insgesamt 12

drwxrwxr-x 2 user group 4096 0Okt 2 14:53 0

drwxrwxr-x 3 user group 4096 Okt 2 14:53 constant
drwxrwxr-x 2 user group 4096 0Okt 2 14:53 system

Listing 28: Case directory

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 23

0 This is the first of the time-directories. It contains the initial and boundary conditions of all variable quan-
tities. A case does not have to start at time ¢ = 0. However, if there is no specific reason for a case to
start at another time that ¢ = 0, a case will always begin at time ¢ = 0. The name of a time-directory is
simply the number of elapsed seconds.

constant This folder contains all files dealing with constant quantities as well as the mesh.
polymesh This is a subdirectory of constant. In this folder all files defining the mesh reside.

system In this folder all files that control the solver or other tools are located

In the course of computing the case two kinds of folders are created. First of all, at defined times all information
is written two the harddisk. A new time-directory is created with the number of elapsed seconds in its name. In
this folder all kinds of files are saved. The number of files is equal or larger than in the 0-directory containing
the initial conditions.

The second category of directory subsumes all kinds of folders created for all kind of reasons or by all kind
of tools, see Section 7.2 for a brief introduction to some of the more common of them.

7.2 Supplemental directories

Directories described in this Section may be created in the course of a computation.

7.2.1 processor*

If a case is solved in parallel, i.e. the case is computed using more than one processor at the time. In this case
the computational domain has to be decomposed into several parts, to divide the problem between the involved
parallel processes. The tool that is used to decompose the case created the processor*-directories. The * stands
for a consecutive number starting with 0. So, if a case is to be solved using 4 parallel processes, then the domain
has to be split into 4 parts. Therefore, the folders processor0 to processor8 are created.

Every one of the parallel*-directories contains a 0- and also a constant-directory containing only the mesh.
The system-directory remains in the case folder. See Section 9.5 for more information about conducting parallel
calculations.

7.2.2 functions

functions or functionObjects perform all kind of operations during the computation. Each function creates a
folder of the same name to save its data in. See Section 29 for more information about functions.

7.2.3 sets

If the tool sample has been used, then all data generated by sample is stored in a folder named sets. See Section
30 for more information about sample.

7.3 Files in system

In the directory named system there are three files for controlling the solver. This files are necessary to run a
simulation. Besides them there may also be additional files controlling other tools.

7.3.1 The main files

This files have to be present in the system folder to be able to run a calculation
controlDict This file contains the controls related to time steps, output interval, etc.
fvSchemes In this file the finite volume discretisation schemes are defined

fvSolution This files contains controls related to the mathematical solver, solver algorithms and tolerances.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 24

7.3.2 Additional files
This list contains a selection of the most common files to be found in the system-directory.
probesDict Alternative to the use of the file probesDict, probes can also be defined in the file controlDict.

decomposeParDict Used by decomposePar. In this file the number of subdomains and the method of decom-
position are defined.

setFieldsDict Necessary for the tool setFields to initialise field quantities.

sampleDict Definitions for the post-processing tool sample.

8 Controlling OpenFOAM

8.1 The means of exerting control

Classical UNIX applications know several means of controlling their configuration [14]:

o System-wide run-control files
An example for these are files in /etc on Linux or UNIX systems. For OpenFOAM, such system-wide
run-control files are located in $FOAM_ETC, which might be home/user/OpenFO0AM/0OpenFOAM-3.0.0/etc.
There, we can find the global controlDict, controlling OpenFOAM’s behaviour installation-wide.

o System-wide environment variables

Such a system-wide variable on a Linux system is $HOSTNAME, which is the name associated to identify
the computer within a network. This name is the same for all users logged in at a certain machine, and
it can and should not be changed by a user. For OpenFOAM such system-wide environment variables are
$FOAM_ETC, $FOAM_INST_DIR or $WM_THIRD_PARTY_DIR. This variables are equal for all users of a certain
installation.

The distinction between system-wide and user-defined settings blurs, when we install OpenFOAM in our
home directory, then we are the administrator and the single user of our installation. This distinction was
made for clusters, which provide one installation to many users.

o User-defined run-control files
A perfect example of a user-defined run-controlled file is the file .bashrc in the user’s home directory.
This file contains user-specific settings. During the installation process of OpenFOAM, this file needs to
be edited to make the OpenFOAM installation available to the user.

o User-set environment variables
These aren’t quite common. On a Linux or UNIX system, a user might set the $EDITOR variable, then
applications, which might call an editor can simply query this variable to call the preferred editor of the
user.

o Switches and arguments passed on the command line
These are very common. A widely known example are the command line arguments -h, ~help or --help
for displaying a summary of the application usage.

The order of the above listed means of control is descending from the system-level down to the per-execution
level. With the freedom to choose between five mechanisms to control the behaviour of an application comes
great responsibility to the software developer to choose wisely. Nobody wants to pass the same, never-changing
command line arguments every time an application in run. Otherwise, user often do not have the possibility to
edit system-wide run-control files, so these might be a bad location for settings which change on a daily basis.

8.1.1 Variables

Variables are the best place to store information, which is repeatedly needed. E.g. it would make no sense to
specify the installation directory of OpenFOAM in every run-control file which needs to know where OpenFOAM
is installed on the system, instead a variable $FOAM_INST_DIR is defined in one of OpenFOAM’s global run-
control files. In all other run-control files, which need to know the installation path, this variable is used. Thus,
information redundancy is avoided. Imagine the poor cluster administrators, if some information were stored

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

25

in multiple places, and this information were to change. Good luck finding and updating ALL occurances of
this data.

Variables offer the freedom to use the same name (i.e. the variable) regardless of what the actual information
is. OpenFOAM is always installed at $FOAM_INST_DIR, whether that is /home/user/0OpenF0AM, /opt/OpenFOAM
or /home/user/Desktop/important_softWare.

8.1.2 Dictionaries

Dictionaries are the run-control files of OpenFOAM. Most of the controls of OpenFOAM are set in so called
dictionaries. An important dictionary is the file controlDict. Dictionaries offer a convenient way to store
structured information of arbitrary size, which would be rather impossible using variables or command line
arguments. Imagine typing all contents of controlDict every time you run a solver.

The distinction between global and local dictionaries saves ourselves from messing up the OpenFOAM
installation when fiddling with a case’s set-up.

8.1.3 Command line arguments

Besides the dictionaries, there are also command-line arguments to control certain aspects of OpenFOAM’s
solvers and utilities. Command line arguments are the best way to pass information to an application that
might change from one run to the other, even when the case is the same.

An example is the -parallel command line switch. Regardless of whether we run a case with a single
process or in parallel, the case’s settings are unchanged. Thus, it would be inconsistent to tell the solver to run
in parallel via a case file.

Command line switches are command line arguments, which do not need any additional information. Adding
-help to a solver name is sufficient to make the solver display its usage summary. A command line argument,
on the other hand, needs additional information. An example is the -time argument used to tell post-processing
tools on which time steps to act upon. Passing -time alone without any further information leaves the tool
clueless and it will issue an error message.

8.2 Syntax of the dictionaries

The dictionaries need to comply a certain format. The OpenFOAM User Guide states, that the dictionaries
follow a syntax similar to the C++ syntax.

The file format follows some general principles of C++ source code.
The most basic format to enter data in a dictionary is the key-value pair. The value of a key-value pair can
be any sort of data, e.g. a number, a list or a dictionary.
8.2.1 Keywords - the banana test

As OpenFOAM offers no graphical menus, in some cases allowed entries are not visible at a glance. If a key
expects a value of a finite set of data, then the user can enter a value that is definitely not applicable, e.g.
banana. Then OpenFOAM produces an error message with a list of allowed entries.

--> FOAM FATAL IO ERROR:
expected startTime, firstTime or latestTime found ’banana’

Listing 29: Wrong keyword, or the banana test

Listing 29 shows the error message that is displayed when the value banana is assigned to the key startFrom
that controls at which time a simulation should start. The error message contains a note that is formated in
this way: expected X, Y or Z found ABC.

If in a dictionary several key-value pairs are erroneous, only the first one produces an error, as OpenFOAM
aborts all further operations.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 26

Pitfall: assumptions & default values

In some cases the banana test behaves differently than expected. Listing 30 shows the warning message Open-
FOAM returns, when the banana test is used with the control compression of controlDict. See Section 8.3.2
for a description of this control. In this case, OpenFOAM does not abort but continues to run the case. In-
stead of returning an error message and exiting, OpenFOAM simply assumes a value in place of the invalid entry.

--> FOAM Warning :
From function IOstream::compressionEnum(const wordé&)
in file db/IO0Ostreams/I0streams/IOstream.C at line 80
bad compression specifier ’banana’, using ’uncompressed’

Listing 30: Failed banana test

8.2.2 Mandatory and optional settings

Some settings are expected by the solver to be made. If they are not present, OpenFOAM will return an error
message. Other settings have a default value, which is used if the user does not specify a value. In this sense,
settings can be divided into mandatory and optional ones.

As mandatory settings causes an error if they are not set, a simulation can be run only if all mandatory
settings were made.

About errors
e There will be an error when mandatory settings were not made.

o There is no error message if an optional setting (that is necessary) was omitted. All optional controls have
a default value and will be in place.

e There is no error message if a setting was made and that setting is not needed. The solver simply ignores
it. Consequently the definition of a variable time step in controlDict does not necessarily mean, that the
simulation is performed with variable time steps, e.g. if icoFoam (a fixed time step solver) is used.

e Sometimes an error message points to the setting of a keyword that is actually not faulty. See Section
8.2.3.

See Section 39.3 for a detailed discussion — including a thorough look at some source code — about reading
keywords from dictionaries.

8.2.3 Pitfall: semicolon (;)

Similar to C++, lines are terminated by a semicolon. Listing 31 shows the content of the file UI in the 0-
directory. The line defining the boundary condition (BC) for the outlet was not terminated properly. Listing
32 shows the provoked error message. This error message does not mention outlet, but rather walls — keyword
walls is undefined. The definiton of the boundary condition for the walls comes after the outlet definition. One
reason for this may be, that OpenFOAM terminates reading the file after the missing semicolon causes a syntax
error, and therefore the boundary condition for the walls remain undefined.

This example demonstrates that the error messages are sometimes not very meaningful if they are taken
literally. The error was made at the definiton of the BC for the outlet. If only the definition. of the BC of the
walls is examined, the cause for the error message will remain unclear, because the BC definition of the walls is
perfectly correct.

dimensions [0 1 -1 00 0 0];

internalField uniform (0 0 0);

boundaryField
{
inlet
{
type fixedValue;
I This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 97

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

value uniform (0 0 0.03704);
}

outlet
{
type zeroGradient

}
walls

type fixedValue;
value uniform (0 0 0);

Listing 31: Missing semicolon in the definition of the BC

--> FOAM FATAL IO ERROR:
keyword walls is undefined in dictionary "/home/user/OpenFOAM/user-2.1.x/run/twoPhaseEulerFoam
/case/0/Ul::boundaryField"

file: /home/user/0OpenF0AM/user-2.1.x/run/twoPhaseEulerFoam/case/0/Ul::boundaryField from line
25 to line 47.

From function dictionary::subDict(const word& keyword) const
in file db/dictionary/dictionary.C at line 461.

FOAM exiting

Listing 32: Error message caused by missing semicolon

8.2.4 Switches

Besides key-value pairs there are switches. These enable or disable a function or a feature. Consequently, they
only can have a logical value.

Allowed values are: on/off, true/false or yes/no. See Section 39.4.1 for a detailed discussion about valid
entries.

8.3 The controlDict

In this dictionary controls regarding time step, simulation time or writing data to hard disk are located.

The settings in the controlDict are not only read by the solvers but also by all kinds of utilities. E.g. some
mesh modification utilities obey the settings of the keywords startFrom and startTime. This has to be kept
in mind when using a number of utilities for pre-processing.

8.3.1 Time control

In this Section the most important controls with respect to time step and simulation time are listed. This list
makes no claim of completeness.

startFrom controls the start time of the simulation. There are three possible options for this keyword.

firstTime the simulation starts from the earliest time step from the set of time directories.
startTime the simulation starts from the time specified by the startTime keyword entry.

latestTime the simulation starts from the latest time step from the set of time directories.

startTime start time from which the simulation starts. Only relevant if startFrom startTime has been
specified. Otherwise this entry is completely ignored!°.

stopAt controls the end of the simulation. Possible values are {endTime, nextWrite, no WriteNow, writeNow}.

endTime the simulation stops when a specified time is reached.

101f the simulation is set to start from firstTime or latestTime, this keyword can be omitted or the value of this keyword can be
anything — startTime banana does not lead to an error, what would be the case if the simulation started from a specific start time.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

28

writeNow the simulation stops after the current time step is completed and the current solution is
written to disk.

endTime end time for the simulation

deltaT time step of the simulation if the simulation uses fixed time steps. In a variable time step simulation
this value defines the initial time step.

adjustTimeStep controls whether time steps are of fixed or variable length.'! If this keyword is omitted, a
fixed time step is assumed by default.

runTimeModifiable controls whether or not OpenFOAM should read certain dictionaries (e.g. controlDict)
at the beginning of each time step. If this option is enabled, a simulation can be stopped by using setting
stopAt to one of these values {nextWrite, noWriteNow, writeNow}, see Section 9.2.

8.3.2 Data writing

In controlDict the controls regarding data writing can be found. Often, it is not necessary to save every time
step of a simulation. OpenFOAM offers several ways to define how and when the data is to be written to the
hard disk.

writeControl controls the timing of writing data to file. Allowed values are {adjustableRunTime, clockTime,
cpuTime, runTime, timeStep }.
runTime when this option is chosen, then every writeInterval seconds the data is written.

adjustableRunTime this option allows the solver to adjust the time step, so that every writeInterval
seconds the data can be written. Otherwise the times at which data is written does not exactly match
the entry in writeInterval. L.e. for a 1s interval the data is written at ¢ = 1.0012,2.0005, ... s.

timeStep the data is written every writeInterval time steps.

writeInterval scalar that controls the interval of data writing. This value gets its meaning from the value
assigned to writeControl.

writeFormat controls how the data is written to hard disk. It is possible to write text files or binary files.
Consequently, the options are {ascii, binary}.

writePrecision controls the precision of the values written to the hard disk.

writeCompression controls whether to compress the written files or not. By default compression is disabled.
When it is activated, all written files are compressed using gzip.

timeFormat controls the format that is used to write the time step folders.

timePrecision specifies the number of digits after the decimal point. The default value is 6.

Pitfall: timePrecision

OpenFOAM is able to automatically increase the value of timePrecision parameter if need arises, e.g. due
to a reduction in (dynamic) time step size'?. This is typically the case when a simulation diverges and the
(dynamic) time step gets decreased by orders of magnitudes. However, simulations that do not diverge may
also create the need for an increase in time precision.

Increased the timePrecision from 6 to 7 to distinguish between timeNames at time 4.70884

Listing 33: Exemplary solver output in the case of an automatic increase of the timePrecision value.

11 This keyword is important only for solvers featuring variable time stepping. A fixed time step solver simply ignores this control
without displaying any warning or error message.

12A dynamic increase of the timePrecision value in simulations with fixed time steps indicates a setting in which the time
precision is not sufficient to adequately represent the time step. This leads to a automatic increase of time precision after the first
time step is written to disk. I.e. if At can’t be represented with timePrecision number of digits after the comma, then t; + At
also can’t be represented. Thus, t; and t1 + At would get the same time name and would consequently be indistinguishable. See
Section 39.5.3 on more implementation details on this matter.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 29

II

If a simulation that increased its time precision is to be restarted or continued from the latest time step, then
the chosen time precision may not be sufficient to represent the present time step values, i.e. a timePrecision
of 3 is not sufficient to represent the latest time step at ¢ = 0.1023s. OpenFOAM will apply rounding to the
reach the selected number of digits behind the comma. Consequently, OpenFOAM will fail to find files at time
t=0.102s.

This behaviour is hard to detect for an unaware user. The only clue for detection lies in this case in the
fourth digit behind the comma, which is present in only in the name of the time step directory but not in
the timeName that is looked up by OpenFOAM. Listing 34 shows the according error message and a directory
listing of the case directory. It is up to the reader to decide whether this is an easy to spot error. The author
took some time, which motivated him to elaborate on this issue in this little collection of errors and misbehaviour.

--> FOAM FATAL IO ERROR: cannot find file
file: /home/gerhard/OpenFO0AM/user-2.3.x/run/icoFoam/cavity/0.102/p at line O.

From function reglOobject::readStream()
in file db/reglOobject/regllobjectRead.C at line 73.

FOAM exiting
user@host :~/0OpenFO0AM/user-2.3.x/run/icoFoam/cavity$ 1s

0 0.1023 constant system
user@host :~/0OpenFO0AM/user-2.3.x/run/icoFoam/cavity$

Listing 34: Exemple of an error caused by an automatic increase of the timePrecision value in the previous
simulation run. We fail to restart the simulation as OpenFOAM is not able to find the correct time step.

8.3.3 Loading additional Libraries

Additional libraries can be loaded with an instruction in controlDict. Listing 35 shows how an external library
(in this case a turbulence model that is not included in OpenFOAM) is included. This model can be found
athttps://github.com/AlbertoPa/dynamicSmagorinsky/.

libs ("libdynamicSmagorinskyModel.so") ;

Listing 35: Load additional libraries; controlDict entry

8.3.4 functions

functions, or functionObjects as they are called in OpenFOAM, offer a wide variety of extra functionality, e.g.
probing values or run-time post-processing. See Section 29.
functions can be enabled or disabled at run-time.

8.3.5 Outsourcing a dictionary

Some definitions can be outsourced in a seperate dictionary, e.g. the definition of a probe-functionObject.

All inclusive

In this case the probe is defined completely in controlDict.

functions

{
probesi
{
type probes;
functionObjectLibs ("libsampling.so");
fields
(
P
I This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 30

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

https://github.com/AlbertoPa/dynamicSmagorinsky/

U
)
outputControl outputTime;
outputInterval 0.01;

probelocations
(

(0.5 0.5 0.05)
)

Listing 36: Definition of a probe in controlDict

Seperate probesDict

In this case the definition of the probe is done in a seperate file — the probesDict. In controlDict the name of
this dictionary is assigned to the keyword dictionary. This dictionary has be located in the system-directory of
the case. It is not possible to assign the path of this dictionary to this keyword.

functions

{
probesil
{
type probes;
functionObjectLibs ("libsampling.so");
dictionary probesDict;
}
}
Listing 37: External definition of probes; Entry in controlDict
fields
(
P
U
)
outputControl outputTime;

outputInterval 0.01;

probelLocations

(

(20.5 0.5 0.05)
)

Listing 38: Definition of probes in the file probesDict

Everything external

There is also the possibility to move the whole definition of a functionObject into a seperate file. In this case
the macro #include is used. This macro is similar to the pre-processor macro if C++.

functions

{
#include "cuttingPlane"

}

Listing 39: Completely external definition of a functionObject; Entry in controlDict

cuttingPlane

{
type surfaces;
functionObjectLibs ("libsampling.so");

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 31

outputControl outputTime;

surfaceFormat raw;
fields (alphal);

interpolationScheme cellPoint;

surfaces
(
yNormal
{
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
basePoint (0 0.1 0);
normalVector (01 0);
}
interpolate true;
}

Listing 40: Definition of a cuttingPlane functionObject in a seperate file named cuttingPlane

8.3.6 Pitfalls
timePrecision

If the time precision is not sufficient, then OpenFOAM issues a warning message and increases the time precision
without aborting a running simulation.

Listing 41 shows such a warning message. The simulation time exceeded 100s and OpenFOAM figured that
the time precision was not sufficient anymore.

--> FOAM Warning
From function Time::operator++()
in file db/Time/Time.C at line 1024
Increased the timePrecision from 6 to 13 to distinguish between timeNames at time 100.001

Listing 41: Warning message: automatic increase of time precision

A side effect of this increase in time precision was a slight offset in simulation time. The time step of this
simulation was 0.001s and the time steps were written every 0.5s. As it is clearly visible in Listing 42, the
names of the time step folders indicate this offset. This effect on the time step folder names was the reason, the
automatic increase of time precision was noticed by the author.

However, automatic increase of time precision has no negative effect on a simulation. This purpose of this
section is to explain the cause for this effect.

101.5000000002
101.0000000002
100.5000000002
100

99.5

99

98.5

Listing 42: Time step folders after increase of time precision

8.4 Run-time modifcations of dictionaries

If the switch runTimeModifiable is set true, on or yes; certain files (e.g. controlDict or fuSolution) are read anew,
if a file has changed. In this way, e.g. the write interval can be changed during the simulation. If OpenFOAM
detects a run-time modification it issues a message on the Terminal.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 32

reglOobject::readIfModified ()
Re-reading object controlDict from file "/home/user/OpenFOAM/user-2.1.x/run/
multiphaseEulerFoam/bubbleColumn/system/controlDict"

Listing 43: Detected modifaction of controlDict at run-time of the solver

8.5 The fvSolution dictionary

The file fvSolution contains all settings controlling the solvers and the solution algorithm. This file must
contain two dictionaries. The first controls the solvers and the second controls the solution algorithm.

8.5.1 Solver control

The solvers dictionary contains settings that determine the work of the solvers (e.g. solution methods, toler-
ances, etc.).

8.5.2 Solution algorithm control

The dictionary controlling the solution algorithm is named after the solution algorithm itself. I.e. the name of
the dictionary controlling the PIMPLE algorithm is PIMPLE. Note, that the name of this dictionary is in upper
case letters unlike most other dictionaries.

Listing 44 shows an example of a PIMPLE dictionary. See Section 24.2 for a detailed discussion on the PIM-
PLE algorithm.

PIMPLE

{
nOuterCorrectors 1;
nCorrectors 2;
nNonOrthogonalCorrectors O;
pRefCell 0;
pRefValue 0;

Listing 44: The PIMPLE dictionary

8.6 Command line arguments

OpenFOAM’s solvers and utilities can be controlled by a set of command line arguments. Some of them are
common to all or many executables, some might be special to a certain tool.

8.6.1 Getting help: -help

The most important command line argument is ~help. This is common to all solvers and tools of OpenFOAM
and it displays a summary of the respective tool.

8.6.2 Getting in control: -dict

Certain tools expect to find a specific dictionary containing necessary information. With the -dict option, the
user can tell the executable, where to look for the dictionary. To the authors knowledge, all tools expecting a
dictionary assume a default location and filename. E.g. in older versions of OpenFOAM blockMesh expected to
find a dictionary named blockMeshDict in the constant/polyMesh sub-directory of the case’s root, in newer
versions it checks also the system directory. If the use chooses to put the dictionary containing into a different
folder, he or she can do so, however, the path to the dictionary now needs to be passed using the -dict command
line argument.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 33

no control dict

The help summary displayed by -help, in some cases, describes the -dict options as follows: read control dic-
tionary from specified location. However, the dictionary specified with the -dict option is not the controlDict.
Thus, all entries that go into controlDict need to go into controlDict. For some tools the description of
the -dict option seems a little ambiguous. What is meant by control dictionary in this case is the dictio-
nary controlling this specific tool, such as blockMeshDict controlls blockMesh or snappyHexMeshDict controls
snappyHexMesh.

9 Usage of OpenFOAM
9.1 Use OpenFOAM

In the most simple case, Listing 45 represents a complete simulation-run.

blockMesh
checkMesh
icoFoam
paraFoam

Listing 45: Compute a simple simulation case

The first command, blockMesh, creates the mesh. The geometry has to be defined in blockMeshDict. checkMesh
performs, as the name suggests, checks on the mesh. The third command is also the name of the solver. All
solvers of OpenFOAM are invoked simply by their name. The last command opens the post-processing tool
ParaView.

There are additional tasks that extend the sequence of commands shown in Listing 45. These can be

e Convert a mesh created by an other meshing tool, e.g. import a Fluent mesh
o Initialise fields

e Set up an parallel simulation; see Section 9.5

9.1.1 Redirect output and save time

The solver output can be printed to the Terminal or redirected to a file. Listing 46 shows how the solver output
is redirected to a file named foamRun.log.

mpirun -np N icoFoam -parallel > foamRun.log

Listing 46: Redirect output to a file

Redirecting the solver output does not only create a log file, it also save the time that is needed to print the
output to the Terminal. In some cases this can reduce simulation time drastically. However, writing to hard
disk also takes its time.

Time steps Cells Print to Terminal Redirect to file
executionTime clockTime executionTime clockTime

5000 400 6,36 9 4,6 6

10000 400 12,71 18 9,22 10
12500 400 15,8 23 11,54 12
25000 400 32,33 47 22,99 23
5000 1600 9,74 11 9,3 10
5000 6400 282,19 283 282,83 283

Table 1: Run-time cavity test case

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 34

II

executionTime is the time the processor takes to calculate the solution of the case. clockTime is the time
that elapses between start and end of the simulation, this is the time the wall clock indicates. The value of
the clockTime is always larger than the value of the executionTime, because computing the solution is not the
only task the processor of the system performs. Consequently, the value of the ClockTime depends on external
factors, e.g. the system load.

Redirect output to nowhere

If the output of a program is of no interest it can be redirected to virtually nowhere to prevent it from being
displayed on the Terminal. Listing 47 shows haw this is done. /dev/null is a special file on unix-like systems
that discards all data written to it.

mpirun -np N icoFoam -parallel > /dev/null

Listing 47: Redirect output to nowhere

9.1.2 Run OpenFOAM in the background, redirect output and read log

In Section 9.1.1 the redirection of the solver output was explained. To monitor the progress of running calculation
the end of the log can be read with the tail command.

Listing 48 shows how a simlation with icoFoam is started and the solver output is redirected. The & at
the end of the line causes the invoked command to be executed in the background. The Terminal remains
therefore available. Otherwise the Terminal would be waiting for icoFoam to finish before executing any further
commands.

The second command invoked in Listing 48 prints the last 5 lines of the log file to the Terminal. tail returns
the last lines of a text file. Without the parameter -n tail returns by default the last 10 lines.

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$ icoFoam > foamRun.log &
[1] 10416

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$ tail foamRun.log -n 5
ExecutionTime = 0.74 s ClockTime = 1 s

Time = 1.12

Courant Number mean: 0.444329 max: 1.70427
user@host :~/0OpenF0AM/user-2.1.x/run/icoFoam/cavity$

Listing 48: Read redirected output from log file while the solver is running

9.1.3 Save hard disk space

OpenFOAM saves the data of the solution in intervals in time directories. The name of a time directory rep-
resents the time of the simulation. Listing 49 shows the content of a case directory after the simulation has
finished. Besides the three folders that define the case (0, constant and system) there are more time directories
and a probes1-folder present.

user@host :~/0OpenFOAM/user-2.1.x/run/icoFoam/cavity$ 1s
0o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 constant probesl system
user@host :~/0penFOAM/user-2.1.x/run/icoFoam/cavity$

Listing 49: List folder contents

The probes!-directory contains the data generated by the functionObject named probesl. The time-directories
contain the solution data of the whole computational domain. Listing 50 shows the contents of the (- and the
0.1-directory. Typically, time-directories generated in the course of the computation contain more data than
the 0-directory defining the initial conditions.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 35

user@host :~/0penFO0AM/user-2.1.x/run/icoFoam/cavityBinary$ 1ls O
p U

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavityBinary$ 1ls 0.1
p phi U wuniform

user@host :~/0OpenF0AM/user-2.1.x/run/icoFoam/cavityBinary$

Listing 50: List folder contents

Using binary files or compressing files

In general the time-directories use the majority of the hard disk space a completed case takes. If the time-
directories are saved in binary instead of ascii format, these use generally a little less space. Another advantage
of storing time step data in binary format, the time step data has full precision.

OpenFOAM also offers the possibility to compress all files in the time step directories. For compression
OpenFOAM uses gzip, this is indicated by the files names in the time step directories, i.e. alphal.gz instead
alphal.

Table 2 shows a comparison of hard disk use. The most reduction is achieved by compressing ascii data files.
However, storing the time step data in ascii has the disadvantage that the numerical precision is limited to the
number of digits stated with the writePrecision keyword in the controlDict. In this case writePrecision
was set to 6, i.e. numbers have up to 6 significant digits. Compressing the binary files shows less effect than
compressing the ascii files, which indicates that the binary files contain less redundant bytes.

Write settings Used space reduction
ascii 45.5 MB
ascii, compressed 16.7 MB 28.8 MB -63.3 %
binary 338 MB 11.7MB -25.7%

binary, compressed 28.8 MB 16.7 MB -36.7 %

Table 2: Comparison of hard disk space consumption

Make sure to avoid unnecessary output

Disk space can easily be wasted by writing everything to disk. Not only writing too many time steps to disk
can waste space, functionObjects can be the culprit too. See 29.4.3.

9.2 Abort an OpenFOAM simulation

An OpenFOAM simulation ends when the simulation time reaches the value specified with the endTime keyword
in controlDict. However, we also need to be able to stop a simulation prematurely. This section explains how
to end a simulation in a controlled manner, i.e. the current state of the solution is written to the harddisk in
order to be able to continue the simulation at a later time.

As a prerequisite, the runTimeModifiable flag has to be enabled in controlDict. This keyword controls
whether controlDict is monitored for changes during the run-time of the simulation. This is necessary for this
method to work. Otherwise, the simulation will stop at endTime.

To abort a simulation we simply need to change the value of the stopAt entry in controlDict from endTime
to writeNow. When OpenFOAM detects the change and re-reads controlDict, this causes OpenFOAM to finish
its current time step and write the state of the solution to disk before ending the run.

9.3 Terminate an OpenFOAM simulation

This section describes how to terminate a running OpenFOAM simulation. See Section 9.2 on how to abort a
simulation in a controlled manner, i.e. saving the current solution and stop the simulation.

This section explains how terminate a running simulation immediately and without saving the current
solution. Use this approach when you wouldn’t use the solution anyway, e.g. because you chose incorrect
settings.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 36

9.3.1 Terminate a process in the foreground

If a command is executed in the Terminal without any additional parameters the process runs in the foreground.
The Terminal is therefore busy and can not be used until the process is finished. When a process is running
in the foreground it can easily terminated by pressing (CTRL]+[C]. Listing 51 features the GNU command
sleep. The only function of this command is to pause for a specified amount of time. With this command the
permature termination of a process can be tried.

user@host:~$ sleep 3
user@host :~$

Listing 51: Keep the Terminal busy

9.3.2 Terminate a background process

If a process runs in the background, the Terminal is free to be used for further tasks while the process is
running. In this case, the background process can not be terminated by pressing [CTRL]+[C] because the
Operating System can not tell which background process the user wants to terminate.

Identify the process

On UNIX based systems every process is identified by a unique number. This is the PID, the process identifier.
The PID is equivalent to a licence plate for a car. During run-time this number is unique. However, after a
process has finished the PID of this process is available for other, later processes.

To find out which processes are currently running, invoke the command ps. This lists all running processes.
Without any further parameters only the processes that were executed from the current Terminal are listed.
Listing 52 shows the result if a new Terminal is opened and ps is called. The first entry — bash — is the Terminal
itself. The second entry — ps — is the only other process active at the time ps looks for all running processes.
The PID is listed in the first column of Listing 52. Depending on the parameters passed to ps the output can
be formatted differently.

user@host:~$ ps

PID TTY TIME CMD
13490 pts/1 00:00:00 bash
13714 pts/1 00:00:00 ps

user@host :~$

Listing 52: List processes in a fresh Terminal

The output of 52 is rather dull. However, there are lots of parameters telling ps what to do. The option -e
makes ps list all systemwide running processes. The output of such a call can be quite long, because ps lists all
processes started by the users as well as all system processes's.

The option -F controls the output format of ps. In this case -F stands for extra full. This means the output
contains a lot of information. Another option to display much information is =1. This option truncates the
names of the processes to 15 characters, whereas -F displays not only the full name of the process, it also

displays the parameters with which the processes were called.

ps -eF

Listing 53: List all running processes of the system

ps displays much information about a process. For terminating a process only the PID is necessary.

Search in the list of processes

The output of ps is a list which can be quite long. To terminate a certain process its PID has to be known.
Searching a number in a list of numbers can be quite painful and errorprone. Therefore it would be handy to
search in the list ps has returned for the desired process.

13System processes are processes run by the Operating System itself.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 37

Before all else, grep does the trick. And now for something more detailed. grep is a program that searches
the lines of its input for a certain pattern. grep can use a file or the standard input as its input. As it is
unpractical to redirect the output of ps into a file only for grep to read it, we directly redirect the output of ps
to the input of grep. This is achieved by the use of a pipe.

Listing 54 shows how this is done. The first part of the command invoked — ps -eF — calls ps to list
all processes currently running in great detail. The option -F is used to make sure long process names can
be distinguished, e.g. to tell buoyantBoussinesqPimpleFoam apart from buoyantBoussinesqSimpleFoam.
Both are standard solvers of OpenFOAM. The bold part are the first 15 characters of the solver’s name. If the
option -F was omitted and both solvers were running, the results of ps would be ambiguous.

The second part of the command invoked in Listing 54 shows the call of grep. grep can be called with one or
two arguments. If only one argument is passed to grep, grep uses the standard input as input. If grep is called
with two parameters, the second argument has to specify the file from which grep has to read. As grep is called
with only one argument, it reads from the standard input.

Because it would be even more boring to type the list returned by ps we redirect the output of ps to the
standard input of grep. This is done by the pipe. The character | marks the connection of two processes in the
Terminal. The command left of the | passes its output directly to the command specified right of the |.

Now we can read and interpret Listing 54. It shows the output of the search for all running processes con-
taining the pattern Foam. In this case a parallel computation is going on. The first line of the result is mpirun.
This process controls the parallel running solvers. The next four lines are the four instances of the solver. How
parallel simulation works is explained in Section 9.5. The second last entry of the result is grep waiting for
input'®. The last line of the result is the pdf viewer which displays this document at that time. This example
shows that is important to choose the pattern wisely, the search may return unexpected results.

user@host:~$ ps -ef | grep Foam

user 11005 5117 0 17:11 pts/2 00:00:05 mpirun -np 4 twoPhaseEulerFoam -parallel

user 11006 11005 99 17:11 pts/2 00:40:27 twoPhaseEulerFoam -parallel

user 11007 11005 99 17:11 pts/2 00:40:28 twoPhaseEulerFoam -parallel

user 11008 11005 99 17:11 pts/2 00:40:27 twoPhaseEulerFoam -parallel

user 11009 11005 99 17:11 pts/2 00:40:26 twoPhaseEulerFoam -parallel

user 11673 11116 0 17:52 pts/12 00:00:00 grep --color=auto Foam

user 32041 1 0 AugO1l ? 00:00:31 evince /tmp/lyx_tmpdir.J18462/1lyx_tmpbufO/open

FoamUserManual_CDLv2.pdf
user@host :~$

Listing 54: Search for processes

List only specified processes

You can tell ps directly in which processes you are interested. The option -C of ps makes ps list only those
processes that stem from a certain command. Listing 55 shows the output when ps -C twoPhaseEulerFoam
is typed into the Terminal. In this case also there are four parallel processes running. Notice, that only the
processes directly related to the solvers are shown. No other results are displayed unlike in Listing 54.

One has to bear in mind, that ps -C does not search for patterns. If the command name passed to ps as an
argument is misspelled, ps will not display the desired result. Listing 56 shows the effect of typos in this case.
The truncation of the process name in the list does not affect the search if the passed command name is equal
or longer than the truncated process name. The first two commands issued in Listing 56 result in a list of all
running instances of the solver. If the passed argument is shorter than the truncated process name — the third
command — ps does not output any results. Also if there is a typo in the passed argument, ps does not find
anything.

user@host:~$ ps -C twoPhaseEulerFoam

PID TTY TIME CMD
11006 pts/2 00:47:44 twoPhaseEulerFo
11007 pts/2 00:47:44 twoPhaseEulerFo
11008 pts/2 00:47:44 twoPhaseEulerFo
11009 pts/2 00:47:43 twoPhaseEulerFo

user@host :~$

140n most Unix-like systems processes connected by a pipe are started at the same time. For this reason grep is already running
while ps is listing all running processes.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 38

Listing 55: List all instances of twoPhaseEulerFoam

user@host:~$ ps -C twoPhaseEulerFoa

PID TTY TIME CMD
12741 pts/0 00:00:34 twoPhaseEulerFo
12742 pts/0 00:00:34 twoPhaseEulerFo
12743 pts/0 00:00:34 twoPhaseEulerFo
12744 pts/0 00:00:34 twoPhaseEulerFo
user@host:~$ ps -C twoPhaseEulerFo

PID TTY TIME CMD
12741 pts/0 00:00:36 twoPhaseEulerFo
12742 pts/0 00:00:36 twoPhaseEulerFo
12743 pts/0 00:00:36 twoPhaseEulerFo
12744 pts/0 00:00:36 twoPhaseEulerFo
user@host:~$ ps -C twoPhaseEulerF

PID TTY TIME CMD
user@host:~$ ps -C twPhaseEulerFoa

PID TTY TIME CMD

Listing 56: List all instances of twoPhaseEulerFoam — the effect of typos

Terminate

The operating system interacts with running processes using signals. The user can also send signals to processes
using the command kill. kill sends by default the termination signal. To identify the process to which the signal
is to be sent, the PID of this process has to be passed as an argument.

Listing 57 shows how the programm sleep is executed, all running processes are listed, the running instance
of sleep is terminated and the running processes are listed again. When ps was executed the second time, a
message is displayed stating the process has been terminated!®. If the process would not have been terminated
the message at the “natural” end of the process would be like in Listing 58'6.

user@host:~$ sleep 20 &

[1] 13063
user@host:~$ ps

PID TTY TIME CMD
12372 pts/0 00:00:00 bash
13063 pts/0 00:00:00 sleep
13064 pts/0 00:00:00 ps

user@host:~$ kill 13063
user@host :~$ ps

PID TTY TIME CMD
12372 pts/0 00:00:00 bash
13065 pts/0 00:00:00 ps
[1]+ Beendet sleep 20

user@host :~$

Listing 57: Terminate a process using kill

user@host:~$ sleep 1 &

[1] 13126
user@host:~$ ps
PID TTY TIME CMD
12372 pts/0 00:00:00 bash
13127 pts/0 00:00:00 ps
[1]+ Fertig sleep 1

user@host :~$

Listing 58: The natural end of a process

150n other systems this message is displayed immediately — see Listing 59. In this case the procedure was tried on the local
computing cluster.

16 A system with English language setting the message would read Terminated if the process would have been terminated and
Done if the process would have been allowed to finish.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 39

user@cluster user> sleep 10 &

[1] 31406

user@cluster user> kill 31406

user@cluster user>

[1] Terminated sleep 10
user@cluster user>

Listing 59: Terminate a process using kill on a different machine

9.4 Continue a simulation

If a simulation has ended at the end time or if it has been aborted there may be the need to continue the
simulation. The most important setting to enable a simulation to be continued has to be made in the file
controlDict. There, the keyword startFrom controls from which time the simulation will be started.

The easiest way to continue a simulation is to set the startFrom parameter to latestTime. Then, if
necessary, the value of endTime needs to be adjusted. After this changes, the simulation can be continued by
simply invoking the solver in the Terminal.

9.5 Do parallel simulations with OpenFOAM

OpenFOAM is able to do parallel simulations. There is no great difference between calculating a case with one
single process or using many parallel processes. The only obvious additional task is to split the computation
domain into several pieces. This step is called domain decomposition. After the domain is decomposed several
instances of the solver are running the case on a subdomain each. Additionally, the invokation of the solver
differs from the single process case.

9.5.1 Starting a parallel simulation

To enable a simulation using several parallel instances of a solver, OpenFOAM uses the MPI standard in the
implementation of OpenMPI. OpenMPI ensures that all parallel instances of the solver run synchronously.
Otherwise the simulation would generate no meaningful results. In order to be able to manage all parallel
processes the simulation has to started using the command mpirun.

Listing 60 shows how a parallel simulation using 4 parallel processes is started. The solver outputs are
redirected into a file called > foamRun.log and the simulation runs in the background of the Terminal. So the
same Terminal can be used to monitor the progress of the calculation. See Section 9.1.2 for a discussion about
running a process in the background.

The output message in the Listing shows the PID of the running instance of mpirun. This PID can be used
to terminate the parallel calculation, like it is explained in Section 9.3.2.

user@host:~$ mpirun -np 4 icoFoam -parallel > foamRun.log &
[1] 11099
user@host :~$

Listing 60: Run OpenFOAM with 4 processes

The number of processes, in this case 4, has to be equal the number of processor* folders. These folders are
created by decomposePar and their number is defined in decomposeParDict. See Section 9.5.2 for information
about domain decomposition.

If this numbers — the number of processor* folders and the number of parallel processes with which mpirun
is invoked — are not equal OpenFOAM issues an error message similar to Listing 61. In this case the domain
was decomposed into 4 subdomains and it was tried to start the parallel simulation with 2 processes. If the
parallel simulation is called with too many processes, OpenFOAM issues an error message like in Listing 62.
The first example shows, that OpenFOAM reacts differently whether the parallel job was started with loo little
or too many processes.

[0] --> FOAM FATAL ERROR:
[0] "/home/user/OpenFOAM/user-2.1.x/run/icoFoam/cavity/system/decomposeParDict" specifies 4
processors but job was started with 2 processors.

Listing 61: Run OpenFOAM with too little parallel processes

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 40

[0] --> FOAM FATAL ERROR:
[0] number of processor directories = 4 is not equal to the number of processors = 8

Listing 62: Run OpenFOAM with too many parallel processes

Pitfall: -parallel

The parameter -parallel is important. If this parameter is omitted, the solver will be executed n times.
Listing 63 shows the output of the command [s when it is run with mpirun with two processes. In this case s
is simply run twice.

If the parameter -parallel is missing, the same happens as in the case of ls. The simulation is run by n
processes at roughly the same time. Listing 64 shows the first lines of output of a situation where the -parallel
parameter was omitted. All solvers start the calculation of the whole case and write their output to the Ter-
minal. The output appears on the Terminal in the order as it is generated by the solvers — in other words, the
output on the Terminal is completely disarranged. If the ~parallel parameter is missing, there is also no check
if the processor™ folders are present.

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$ mpirun -np 2 1s
0 constant system

0 constant system

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$

Listing 63: Run [s using 2 processes

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$ mpirun -np 4 icoFoam

Y R it i ittt it it e *\
| ========= |

I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
AN\ / 0 peration	Version: 2.1.x
\\ / A nd	Web: www.0O0penFOAM. org
\\/ M anipulation	
A\ m m - */
Build : 2.1.x-6e89balbcdlb

Exec : icoFoam

Date : Jan 29 2013

Time : 10:51:12

Host : "host"

PID : 25622

[kmmmmm - *\
| ========= |

I\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 2.1.x |
| N\ / A nd | Web: www.OpenFOAM. org |
| \\/ M anipulation | |
kK m oo - */
Build : 2.1.x-6e89balbcdl5b

Exec : icoFoam

Listing 64: Run icoFoam without the -parallel parameter

Pitfall: domain decomposition

If there was no domain decompositin prior to starting a parallel simulation, OpenFOAM will issue an corre-
sponding error message.

[0] --> FOAM FATAL ERROR:

[0] twoPhaseEulerFoam: cannot open case directory "/home/user/OpenFOAM/user-2.1.x/run/
twoPhaseEulerFoam/testColumn/processor0"

[o]

[0] FOAM parallel run exiting

Listing 65: Missing domain decomposition

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 41

Pitfall: domain resonstruction

After a parallel simulation has ended, all data is residing in the processor* folders. If paraView is started —
without prior domain reconstruction — para View will only find the data of the 0 directory.

9.5.2 Domain decomposition

Before a parallel simulation can be started the domain has to be decomposed into the correct number of
subdomains — one for each parallel process. The parallel processes calculate on their own subdomain and
exchange data of the border regions at the end of each time step. This is also the reason why the parallel
processes have to be synchonous. Otherwise, processes with a lower computational load would overtake other
processes and they would exchange data from different times.

Just before starting the simulation the domain has to be decomposed. The tool decompsePar is used for
this purpose. Other operations, e.g. initialising fields using setFields have to take place before the domain
decomposition. decomposePar reads from decomposeParDict in the system directory. This file has to contain
al least the number of subdomains and the decomposition method.

decomposePar creates the processor® directories in the case directory. Inside the processor* folders a 0 and
a constant folder are created. The 0 folder contains the initial and boundary conditions of the subdomain and
the constant folder contains a polyMesh folder containing the mesh of the subdomain.

All parallel processes read from the same system directory, as the information stored there is not affected
by the domain decomposition. Also the files in the constant directory are not altered.

Pitfall: Existing decomposition

If the domain has already been decomposed and decomposePar is called again, e.g. because the number of
subdomains has been changed or some fields have been reinitialised, OpenFOAM issues an error message.
Listing 66 shows an example. In this case the domain has already been decomposed into 2 subdomains and the
attempt is made to decompose it again. OpenFOAM always issues an error message, whether the number of
subdomains has changes or not.

The resulting error message proposes two possible solutions. The first is to invoke decomposePar with the
-force option to make decomposePar remove the processor® folders before doing its job. The second proposed
solution is to manually remove the processor* folders. In this case the error message contains the proper com-
mand to do so. The user can retype the command or copy and paste it into the Terminal.

--> FOAM FATAL ERROR: Case is already decomposed with 2 domains, use the -force option or
manually

remove processor directories before decomposing. e.g.,
rm -rf /home/user/0OpenF0AM/user-2.1.x/run/icoFoam/cavity/processor*

Listing 66: Already decomposed domain

Time management with decomposePar

In the course of an update of OpenFOAM decompose gained the option —time. This enhancement took place
between the release of OpenFOAM 2.1.0 and OpenFOAM 2.1.1. Such enhancements typically first appear in
the respository release OpenFOAM 2.1.x. So, it may be, that some installations of OpenFOAM 2.1.x contain
this feature and some not depending on the time of installation or the time of the last update.

The option time lets the user specify a time from which or a time range in which the domain is to be
decomposed. Listing 67 shows some examples of how this option works.

The option -latestTime makes decomposePar use the latest time step as starting time step for the subdo-
mains.

user@host:~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$ 1s

0 0.1 0.2 constant probesl processor0 processorl processor2 system

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$ decomposePar -time 0.1:0.2 -force > /dev/
null

user@host :~/0OpenF0AM/user-2.1.x/run/icoFoam/cavity$ 1ls processor0

0.1 0.2 constant

user@host :~/0OpenF0AM/user-2.1.x/run/icoFoam/cavity$ decomposePar -time 0.2 -force > /dev/null

user@host :~/0OpenF0AM/user-2.1.x/run/icoFoam/cavity$ 1ls processorO

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

42

0.2 constant
user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$

Listing 67: Time management with decomposePar

9.5.3 Domain reconstruction

To be able to look at the results the data has to be reassembled again. This job is done by reconstructPar. This
tool collects all data of the processor* folders and reconstructs the original domain using all the generated time
step data. After reconstructPar has finished the data of the whole domain resides in the case directory and the
data of the subdomains resides in the processor* folders.

Listing 68 shows the content of the case directory after a parallel simulation has finished. The first command
is a simple call of s to display the contents of the case directory. This is not different from the situation before
the parallel simulation was started with the exception of the log file. However, this log file could be from a
previous run. So, listing the contents after a parallel simulation has finished carries no real information.

The second command lists the contents of the processor0 directory. In this directory — as well as in all other
processor® folders — there is time step data. The third command reconstructs the domain. After this tool has
finished, the case directory also contains time step data. The last command lists the contents of the processor0
folder again. This data has not been removed. So, a finished parallel case stores its time step data twice and
therefore uses a lot of space.

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/cavity$ 1s

0 constant foamRun.log probesl processor0 processorl processor2 processor3 system

user@host :~/0penFO0AM/user-2.1.x/run/icoFoam/cavity$ 1ls processorO

0 0.1 0.2 0.3 0.4 0.5 constant

user@host :~/0OpenFOAM/user-2.1.x/run/icoFoam/cavity$ reconstructPar > foamReconstruct.log &

[1] 26269

user@host :~/0OpenF0AM/user-2.1.x/run/icoFoam/cavity$ 1s

0 0.1 0.2 0.3 0.4 0.5 constant foamReconstruct.log foamRun.log probesl processor0
processorl processor2 processor3 system

[1]1+ Fertig reconstructPar > foamReconstruct.log

user@host :~/0OpenF0AM/user-2.1.x/run/icoFoam/cavity$ 1ls processorO

0 0.1 0.2 0.3 0.4 0.5 constant

user@host :~/0penFOAM/user-2.1.x/run/icoFoam/cavity$

Listing 68: A finished parallel simulation

Time management

If a simulation has been startet from ¢ = ¢; the domain has to be reconstructed for times t > t;. Calling re-
constructPar without any options regarding time, the program starts reconstructing the domain at the earliest
time. To prevent the tool from reconstructing already reconstructed time steps the -time option can be used.
Listing 69 shows how simulation results are reconstructed for ¢t < 60s.

reconstructPar -time 60:

Listing 69: Zeitparameter fiir reconstructPar

Another option to reconstruct only the new time steps is the command line option -newTimes. By using
this option the proper time span to reconstruct is automatically determined.

9.5.4 Run large studies on computing clusters

Simulating parallel on a machine brings some advantages and enables the user to run even large simulations
on a workstation. However, if the cases is very large, or parametric studies are to be conducted, using the
workstation can be counter productive. Therefore, simulating on a computing cluster is the method of choice
for large scale calculations. The user can follow a two step method.

1. Set up the case and run some test simulations, e.g. for a small number of time steps, on the workstation
to ensure the simulation runs

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 43

2. Do the actual simulation on the cluster

The fact, that OpenFOAM runs on a great number of platforms enables the user to do simulations on the
workstation as well as on a big cluster with tens or hundreds of processors.

Run OpenFOAM using a script

Section 49.5 explaines how to set up a script that runs multiple cases.

9.6 Using tools

OpenFOAM consists besides of solvers of a great collection of tools. These tools are used for all kind of
operations.

All solvers and tools of OpenFOAM!'7 assume that they are called from the case directory. If an executable
is to be called from another directory the path to the case diretory has to be specified. Then the option -case
has to be used to specify this path.

Listing 70 shows the error message displayed by the tool fluentMeshToFoam as it was executed from the
polyMesh directory. The tool added the relative path system/controlDict to the currect working directory.
This resulted in an invalid path to controlDict as the error message tells the user. Actually, the error message
states that the file could not be found. This does not solely imply an invalid path. The file could simply be
missing.

--> FOAM FATAL IO ERROR:
cannot find file

file: /home/user/OpenFO0AM/user-2.1.x/run/icoFoam/testCase/constant/polyMesh/system/controlDict
at line O.

From function reglOobject::readStream()
in file db/reglIOobject/regllobjectRead.C at line 73.

FOAM exiting

Listing 70: Wrong path

The correct usage of the —case option is shown in Listung 71. There the correct path to the case directory
— two levels upwards — is specified using ../...18

user@host :~/0OpenFO0AM/user-2.1.x/run/icoFoam/testCase/constant/polyMesh$ fluent3DMeshToFoam -
case ../.. caseMesh.msh

Listing 71: Specify the correct path to the case

17No exeption known to the author.

180n most Linux or Unix systems . refers to the current directory and .. refers to the directory above the current one. To
change in the Terminal one directory upwards on Linux cd .. does the job and on MS-DOS or Windows cd.. is the proper
command.

Also, on Linux systems the tilda refers to the home directory of the current user.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

44

Part 111
Pre-processing

10 Geometry creation & other pre-processing software

There are many ways to create a geometry. There is a great number of CAD software, there is a number of
CFD pre-processors capable of creating geometries and there is the good old blockMeshDict.
This section is about the different ways to generate a geometry for a subsequent CFD simulation.

10.1 blockMesh

blockMesh is OpenFOAMs own pre-processing tool. It is able to create the domain geometry and the cor-
responding mesh. See Section 12 for a discussion on blockMesh. For the reason of simplicity all aspects of
blockMesh — geometry creation as well as meshing — are covered in Section 12.

10.2 CAD software

There is a great number of CAD software around. Each CAD program usually uses its own file format. However
most CAD programs support exporting the geometry in different formats, e.g. STL, IGES, SAT. If CAD software
is used to create the geometry the data has to be exported to be used by a meshing program. A common file
format for this purpose is the STL format. snappyHexzMesh can be used with STL'? geometry definitions.

10.2.1 OpenSCAD

OpenSCAD [http://www.openscad.org/| is an open source CAD tool for creating solid 3D CAD models. A
CAD model is created by using primitve shapes (cubes, cylinders, etc.) or by extruding 2D paths. Models are
not created interactively like in other CAD software. The user writes an input script which is interpreted by
OpenSCAD. This makes it easy to create parametric models.

For further information on usage see the documentation http://en.wikibooks.org/wiki/0OpenSCAD_User_
Manual.

Pitfall: STL mesh quality

OpenSCAD is a tool to create CAD models. Therefore the requirements on the produced STL mesh are
completely different than on a mesh for CFD simulations. OpenSCAD produces STL meshes that define the
geometry correctly but the mesh is of a bad quality from a CFD point of view.

Figure 1 shows the STL mesh of a circular area. All triangles defining the circular area share one vertex.
This vertex is probably the base point for the mesh creation of OpenSCAD. From a CFD point of view the
triangular face elements are highly distorted and have a bad aspect ratio. However from a CAD point of view
these triangles are prefectly sufficient to represent the circular area.

If a finite volume mesh is to be derived from the STL surface mesh (e.g. with GMSH) problems may arise.
If the only purpose of the STL mesh is to represent some geometry — like it is the case with snappyHexMesh —
then this quality issues can be ignored.

199TL is infact a surface mesh enclosing the geometry. Therefore the term STL mesh or STL surface mesh is also valid.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

45

http://www.openscad.org/
http://en.wikibooks.org/wiki/OpenSCAD_User_Manual
http://en.wikibooks.org/wiki/OpenSCAD_User_Manual

_labColumn.stl

File Tools Help

4
§ [ceometry ﬂ

////////////
1 'y cememanvenTe |
p 7 Vi Physical groups
/ _
/ Edit
/
‘ Reload

Elementary entities

~

SN,
= =

oy ////
/v\/\/77_/77// jLY

88X YZQ11@S K) [>[Geometry

Figure 1: The STL mesh of a circular area generated by OpenSCAD

10.3 Salome

Salome [http://www.salome-platform.org/] is a powerful open source pre-processing software developed by
EDF. Salome can be used to create a geometry interactively or by interpreting a python script?’. Salome comes
with a number of internal and external meshing utilities. Salome has also a post-processing module.

Salome is a part of a collection of open source software developed by EDF. Salome serves as the pre- and

post-processor for Code__Aster (structural analysis) and Code_Saturne (CFD).
When Salome is used to create a mesh, this mesh needs to be exported by Salome in the UNV format. Then

the mesh can be converted by the ideasUnvToFoam utility of OpenFOAM.
See http://caelinux.org/wiki/index.php/Doc:Salome for documentation and usage examples of Salome.

104 GMSH
GMSH is a meshing tool with some pre- and post-processing capabilities [http://www.geuz.org/gmsh/].

11 Meshing & OpenFOAMs meshing tools

OpenFOAM brings its own meshing utilities: blockMesh and snappyHexMesh. Alternatively there is a number
of other meshers that can be used. Then, some conversion utilities (listed in Section 11.2) have to be used.
checkMesh is a utility to investigate the mesh quality regardless of how the mesh was created.

blockMesh is able to also create the geometry of the simulation domain. snappyHexMesh is, in contrast to
blockMesh, a meshing tool that uses an external geometry definition — in the form of an STL file.

11.1 Basics of the mesh

11.1.1 Files

A mesh is defined by OpenFOAM using several files. All of these files reside in constant/polyMesh/. The
names of these files are rather self explanatory, the rest is explained in the OpenFOAM User Guide [39].

boundary contains a list of all faces forming the boundary patches

faces contains the definition of all faces. A face is defined by the points that form the face.

neighbour contains a list of the neighbouring cells of the faces

20Galome can be controlled completely by Python. Thus parametric geometry or mesh creation is possible.

m This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 46
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

http://www.salome-platform.org/
http://caelinux.org/wiki/index.php/Doc:Salome
http://www.geuz.org/gmsh/

owner contains a list of the owning cells of the faces
points contains a list of the coordinates of all points

The description of a mesh is based on the faces. The geometry is discretised into finite volumes — the cells.
Each cell is delimited by a number of faces, e.g. a hexahedron has 6 faces. The faces can be divided into two
groups. Boundary faces border only one cell. These faces make up the boundary patches. All other faces can
be seen as the connection between two cells and are called internal faces. A face bordering more than two cells
is not possible. An internal face is, by definition, owned by one cell and neighboured by the other one. So, the
two cells connected by a face can be destincted.

This five files are absolutely necessary to describe a mesh regardless of how the mesh was created in the
first place. However, some ways of creating a mesh produce additional files. Listing 72 shows a list of all files
created with Gambit and converted by fluentMeshToFoam.

user@host :~/0OpenF0AM/user-2.1.x/run/twoPhaseEulerFoam/columnCase$ 1ls constant/polyMesh/
boundary cellZones faces faceZones mneighbour owner points pointZones

Listing 72: Content of constant/polyMesh

11.1.2 Definitions
Face

A face is defined by the vertices or points that are part of the face. The points need to be stated in an order
which is defined by the face normal vector pointing to the outside of the cell or the block. The way faces are
defined is the same for cells of the mesh or for blocks of the geometry.

Figure 2: The top face of the generic block of Figure 3

To elaborate this further we look at the top face of the generic block of Figure 3 in Figure 2. The vertices
with the numbers 4, 5, 6 and 7 are part of the face. The face normal vector — denoted by n in Figure 2 — that
points outwards of the block is parallel to the local z axis. Therefore we need to specify the vertices defining
the face in counter-clockwise circular order, when we look at the block from the top. The direction of rotation
is marked in Figure 2 with the + sign. The starting vertex is arbitrary but it must not appear twice in the list.

11.2 Converters

To use meshes created by programs other than blockMesh there is a number of converters. The User Guide [39]
lists the following converters:

e fluentMeshToFoam
o starToFoam

e gambitToFoam

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

47

Correct definitions
(4567 (7T456) (6745) (567 4)

Wrong direction of rotation
(7654 (4765 (5476) (6547

Non-circular Starting point repeated
(7564) (45674)

Table 3: Valid and invalid face definitions

e ideasToFoam
o cfrjToFoam

The names of the converters are pretty self explanatory.

11.2.1 fluentMeshToFoam and fluent3DMeshToFoam

fluentMeshToFoam converts meshes stored in the *.msh file format into the format of OpenFOAM. To be
more specific, fluentMeshToFoam converts only 2D meshes, whereas 3D meshes can be converted using flu-
ent3DMeshToFoam.

The converter expects the path to the *.msh file as an argument. The converter saves the mesh in the format
of OpenFOAM in the constant/polymesh directory.

If converter is invoked from a directory other than the case directory, then the path to the case directory
has to be specified via an additional argument. See Section 9.6.

If the mesh was created using an other dimension than in metres, the command line parameter -scale can
be used to correct the scaling. OpenFOAM expects the mehs data to be expressed in metres.

All other possible option can be displayed with this command line parameter fluentMeshToFoam -help.

11.3 Mesh manipulation
11.3.1 transformPoints

The tool transformPoints can be used to scale, translate or rotate the points a mesh. Section 17.3.4 contains a
case in which this tool can be useful.

12 blockMesh

blockMesh is used to create a mesh. The geometry is defined in blockMeshDict. This file also contains all
necessary parameters needed to create the mesh, e.g. the number of cells. Therefore, blockMesh is a combined
tool to define and mesh a geometry in contrast to other meshers that use CAD files to import a geometry
created by some other software.

12.1 The block

The geometry created by blockMesh is based on the generic block. Figure 3 shows a generic block.

The blue numbers are the local vertex numbers of the block. The vertices are numbered counter-clockwise?
in the local « — y plane starting at the origin of the local coordinates?2. Then the vertices above the local z —y
plane are counter-clockwise numbered starting with the vertex on the local z axis.

The local vertex numbers are important when defining the block. The first part of the blockMeshDict is
generally a list of vertices. From this vertices the blocks are constructed. A block is defined by a list of 8 vertices
which have to be ordered in a way to match the local vertices. Therefore the first entry in the list of vertices

1

21Ty mathematics the positive direction of rotation is generally determined with the right-hand or cork-screw rule. Let the thumb
of your right hand point in the positive direction of the rotation axis, then the fingers of the right hand point in the positive
direction of revolution.

22If we number all vertices in the z — y plane then the local z axis is the axis of revolution. Thus the counter-clockwise direction
is the mathematically positive direction of revolution.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

48

is the local 0 vertex, then the local 1 vertex follows. The local vertex numbers define the order in which the
vertices have to passed when constructing a block.

The coordinate system originating from vertex 0 are the local coordinates. The local coordinates are im-
portant when specifying the number of cells or mesh grading (see simpleGrading in Section 12.4). The local
coordinate axes do not need to be parallel or to coincide with the global coordinate axes.

The edges are also numbered and have a direction. Starting with the edge parallel to the local x axis the
edges are numbered counter-clockwise starting with the edge emanating from the origin of the local coordinates.
Next the edges parallel to the local y axis are numbered and finally the edges parallel to the local z axis. The
edge number is important when specifying a grading for each edge individually (see edgeGrading in Section
12.4).

As it is indicated on Figure 3, the edges do not need to be parallel or straight. See Section 12.2.4 on how to
define curved edges.

/ 2 —
27 /
7 : 6
’ ; 3 =
, T
4 . 5 10
T
11
| ;
T : 2
LB N
E
pa
/4 5
Yy
¢ > 0 —
0 z 1

Figure 3: The generic block

12.2 The blockMeshDict

The file blockMeshDict defines the geometry and controls the meshing process of blockMesh. Listing 73 shows
a reduced example of the blockMeshDict. This file was taken from the cavity tutorial case.

Y e e k= CHt —kmmmmmm e m e *\
| ===s====== | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
[\\ / 0 peration | Version: 2.1.x |
| \\ / A nd | Web: www.OpenFOAM. org |
| \\/ M anipulation | |
ko mm o oo o */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;
}

// * % % k % k *x k sk k * *k * %k *k %k * %k * %k * x * *kx * *x *k *x * *x * *x * *x *x *x *x //
convertToMeters 0.1;

vertices

(
(0 0 0) // 0
(0 00.1) // 1
m This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 49

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

);

blocks
(

hex (0 1 2 3 4 5 6 7) (20 20 1) simpleGrading (1 1 1)
)

edges
(
)

boundary
(
movingWall
{
type wall;
faces
(
(37 6 2)
)

)
mergePatchPairs
(

)

Listing 73: A minimal blockMeshDict

12.2.1 convertToMeters

convertToMeters is a scaling factor to convert the vertex coordinates of blockMeshDict into meters. If the
vertex coordinates are entered in an other unit than meters, this value has to be chosen accordingly. Listing 74
shows how to set this factor if the vertex coordinates are entered in millimeters.

convertToMeters 0.001;

Listing 74: convertToMeters

If the keyword convertToMeters is missing in the blockMeshDict, then no scaling is used, i.e. the default
value of 1 is assumed.

To make sure if a scaling factor has been used, the output of blockMesh can be checked. Listing 75 shows
the message issued by blockMesh regarding the scaling factor defined with convertToMeters.

Creating points with scale 0.1

Listing 75: Output of blockMesh when convertToMeters is set to 0.1

convertToMeters is a uniform scaling factor. Non-uniform scaling or other operations can be performed
with another tool. See Section 11.3.1 and 17.3.4.

12.2.2 vertices

The vertices sub-dictionary contains a list of vertices. Each vertexs is defines by its coordinates in the global
coordinate system. By default OpenFOAM treats these coordinates as in metres. However, with the help of
the keyword convertToMeters, the vertices can be specified in other units.

The index of a vertex in this list is also the global number of this vertex, which is needed when constructing
blocks from the vertices. Remember, counting starts from zero. Thus the first vertex is the list of vertices can
be addressed by its index 0. A way to keep oneself aware of this fact is to add comments?? to the vertex list as
in Listing 73.

23As OpenFOAM treats its dictionaries much in the same way as C/C++ source files are treated by the C/C+4+ compiler.
Therefore comments work the same way as they do in C or C++.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

50

12.2.3 blocks

The only valid entry in the blocks sub-dictionary is the hex keyword. The blocks section of the blockMeshDict
contains a list of hex commands. Listing 76 shows an example of a block definition with the hex keyword.

After the word hex a list of eight numbers defining the eight vertices of the block follows. The order of the
entries in this list is the same order as the local vertex numbers of the block in Figure 3.

Then a list of three positive integer numbers follows. These numbers tell blockMesh how many cells need
to be created in the direction of the local coordinate axes. Thus, the first number is the number of cells in the
local x direction.

The next entry is a word stating the grading of the edges. This entry is in fact redundant. In OpenFOAM-
2.1.x only the last entry, the list of expansion ratio, controls the grading. The third entry could even be omitted.
However, maybe future versions of OpenFOAM make use of this entry. So the author does not advocate to
omit this parameter.

The last entry of the block definition is a list of either three or twelve positive numbers. This numbers define
the expansion ratio of the grading. In the case of three numbers, simpleGrading is applied. If twelve numbers
are stated, then edgeGrading is performed.

If the list contains only one entry, then all edges share the same expansion ratio. Any other number of
entries in this list leads to an error.

hex (0 1 2 3 45 6 7) (20 20 1) simpleGrading (2 4 1)

Listing 76: The hex command in blockMeshDict

Creating a block with 6 faces

The hex instruction can also be used to create a prism with a triangular cross-section. Such blocks are needed
for simulations that make use of axi-symmetry. See the User Manual [39] for instructions on this topic.

12.2.4 edges

The edges sub-dictionary contains pairs of vertices that define an edge. By default edges are straight, by
explicitely specifying the shape of the edge, curved edges can be created. This sub-dictionary can be omitted.
Listing 77 shows the message issued by blockMesh when edges is omitted.

No non-linear edges defined

Listing 77: Output of blockMesh when edges is omitted

Otherwise, blockMesh issues a message as in Listing 78 regardless whether curved edges are actually created or
only an empty edges sub-dictionary is present.

Creating curved edges

Listing 78: Output of blockMesh when edges is present

Creating arcs

With the keyword arc a circular arc between two vertices can be created. Listing 79 shows the definition of a
circular arc between the vertices 0 and 3. In order to define a circular arc three points are necessary. Therefore
the third point follows the indizes of the two vertices defining the edge.

edges
(

arc 0 3 (0 0.5 0.05)
)

Listing 79: Definition of a circular edges in the edges sub-dictionary

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

51

The keyword arc can not be used to define a straight edge. If the two vertices and the additional interpo-
lation point are co-linear, blockMesh will abort issuing an error message as in Listing 80.

--> FOAM FATAL ERROR:
Invalid arc definition - are the points co-linear? Denom =0

From function cylindricalCS arcEdge::calcAngle ()
in file curvedEdges/arcEdge.C at line b55.

FOAM aborting

Listing 80: Output of blockMesh when the three points defining an arc are co-linear

Creating splines

The keyword spline defines a spline. After the two vertices defining the edge a list of interpolation points has
to follow.

edges

(

spline 0 3 ((0 0.25 0.05) (0 0.75 0.05))
)

Listing 81: Definition of a spline in the edges sub-dictionary

Creating a poly-line

Other than a spline, a poly-line connects several points with straight lines.

edges
(

polyLine 0 3 ((0 0.25 0.05) (0 0.75 0.05))
)

Listing 82: Definition of a poly-line in the edges sub-dictionary

Creating a straight line

For the sake of completeness there is the keyword line. This keyword takes the two vertices defining the edge
as arguments. Straight lines are created by blockMesh by default. So there is no need for the user to specify
straight lines.

edges
(

line 0 3
)

Listing 83: Definition of a line in the edges sub-dictionary

Summary

Edges defined within the blockMeshDict are used to compute the locations of a block’s internal nodes. The
edge however, is approximated linearly as shown in Figure 4.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

52

Figure 4: A block with a poly-line at the left side. The red line indicates the poly-line. This figure makes it
obvious that edges defines in the blockMeshDict serve to compute the locations of the block’s internal nodes.
The block itself however, does not obey the poly-line.

12.2.5 Dboundary

The boundary list contains a dictionary per patch. This dictionary contains the type of the patch and the list
of faces composing the patch. Listing 84 shows an example of how a patch consisting of one face is defined.

boundary
(
inlet
{
type patch;
faces
(
(0 32 1)
)

Listing 84: The boundary list of blockMeshDict

Pitfall: defaultFaces

If faces are forgotten in the boundary definition, then blockMesh creates an additional patch named defaultFaces.
This patch has an empty boundary condition automatically assigned. Listing 85 shows a warning message issued
by blockMesh. In this case some faces were missing in the boundary definition. This, however, does not cause
blockMesh to abort mesh generation. If a 2D mesh is to be created, the creation of the default patch with an
empty boundary condition can be expected behaviour. However, it is not advisible to rely this kind of default
behaviour when building a case.

Creating block mesh topology --> FOAM Warning :
From function polyMesh::polyMesh(... construct from shapes...)
in file meshes/polyMesh/polyMeshFromShapeMesh.C at line 903
Found 6 undefined faces in mesh; adding to default patch.

Listing 85: A warning message of blockMesh caused by an incomplete boundary definition.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 53

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

If faces are forgotten in the creation of a 3D mesh, this behaviour might hide the source of error. blockMesh
quietly creates the mesh with the default patch — save the warning message as in Listing 85. Running the case
with the errorneous mesh definition will not immediately crash the solver. Even the fact that none of the fields
have a boundary condition specified for the default patch does not cause the solver to abort. A patch with an
empty boundary condition does not require any further entries in the field-files (e.g. U or p). OpenFOAM knows
already all it needs to know about this specific patch and there is no reason to throw an error message. When
the case is run with a 3D mesh and one or more empty patches, the solver starts running without complaints.
At some point the solution might run into numerical trouble.

Only running checkMesh is able to give an indication to detect such kind of error. Listing 86 shows the
warning message issued by checkMesh when a 3D mesh contains one empty default patch. Although, the warn-
ing states that there is something wrong with the mesh, in the end checkMesh reports no failed mesh checks.

Checking topology...
Boundary definition OK.

**x*Total number of faces on empty patches is not divisible by the number of cells in the mesh
. Hence this mesh is not 1D or 2D.

Listing 86: A warning message of checkMesh caused by an incomplete boundary definition of a 3D mesh.

Pitfall: patches

In older versions of OpenFOAM, there was a patches sub-dictionary instead of the boundary sub-dictionary,
see http://www.openfoam.org/version2.0.0/meshing.php. In some tutorial cases the old patches sub-
dictionary can be found. However, it is recommended to use the boundary sub-dictionary because in some cases
the use of the patches sub-dictionary results in errors.

To find out if there are still tutorial cases present that use the patches sub-dictionary the command of
Listing 87 searches all files with the name blockMeshDict in the tutorials for the word patches.

find $FOAM_TUTORIALS -name blockMeshDict | xargs grep patches

Listing 87: Find cases that still use the patches sub-dictionary in the blockMeshDict to define the boundaries

12.2.6 mergePatchPairs

The mergePatchPairs list contains pairs of patches that need to be connected by the mesher.

Nothing to merge

This entry can be omitted. Listing 88 shows the message issued by blockMesh when mergePatchPairs is omitted.

There are no merge patch pairs edges

Listing 88: Output of blockMesh when mergePatchPairs is omitted

Patches to merge

When two patches need to be merged, then the patch pair needs to be stated in the mergePatchPairs list. The
first patch of the pair is considered the master patch the second is the slave patch. The reason and consequences
of this are described in the official User Manual [39].

mergePatchPairs
(
(master slave)

)

Listing 89: The mergePatchPairs list in the blockMeshDict

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

54

http://www.openfoam.org/version2.0.0/meshing.php

Figure 5: The mesh of two merged blocks

If the patches that are part of the merging operation contain faces which are unaffected by the merging, the
merge operation will fail. When the blocks of Figure 8 are to be connected, then the patch pair consists only
of the face (1 2 6 5) and (12 15 11 8). If one of the two patches contains an additional face, blockMesh will
crash with an error. Thus the patches need to be defined as in Listing 90.

boundary
(
master
{
type patch;
faces
(
(1 2 6 5)
)
}
slave
{
type patch;
faces
(
(12 15 11 8)
)

)

Listing 90: The patch definitions needed to connect the blocks of Figure 8 with mergePatchPairs in the
boundary sub-dictionary

blockMesh creates hanging nodes in order to connect the mesh of the blocks. Figure 5 shows the mesh of
two merged blocks. Figure 6 shows the larger of the two blocks. The diagonal lines — one of them is marked
with a red square in Figure 6 — are artefacts of the depiction of ParaView. The diagonal line that divides the
L-shaped area is not present in the mesh. The right image in Figure 6 was edited with an image manipulation
program to reflect the actual situation of the mesh. During the merging operation the face touching the second
block is divided to match the second block. Thus, a quadrangular cell face is divided to two faces. The face
denoted with the red 1 consists of 6 nodes and the face with the red 2 constists of four nodes.

12.3 Create multiple blocks

A single block is almost never sufficient to model the geometry of a CFD problem. blockMesh offers the possibility
to create an arbitrary number of blocks which can be connected. If blocks are constructed in a fashion that

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

1 Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

55

Figure 6: The mesh of two merged blocks. Left: screenshot of ParaView. Right: edited image to depict the
actual faces.

they share vertices, then they are connected by blockMesh by default.

12.3.1 Connected blocks

Figure 7 shows two connected blocks. These blocks share vertices. Therefore, the blocks are connected auto-
matically.

N
(=2}

11

————— =)y

’.
I
I
I
I
I
I
I
1
1
I
I
I
I
I
I
I
I
MU
\
1

0 1

Figure 7: Two connected blocks

Listing 91 shows the blocks sub-dictionary to create two connected blocks as they are depicted in Figure
7. The global vertex numbering is arbitrary. However, the order in which the vertex numbers are listed after
the hex keyword corresponds with the local vertex numbering of the generic block in Figure 3.

blocks
(
hex (0 1 2 3 45 6 7) (10 10 10) simpleGrading (1 1 1)
hex (1 9 10 2 5 8 11 6) (10 10 10) simpleGrading (1 1 1)
)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

LIE Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

56

Listing 91: The blocks entries in blockMeshDict to create the connected blocks of Figure 7

12.3.2 TUnconnected blocks

Figure 8 shows a situation in which two blocks were created that share no vertices. Creating multiple blocks is
done simply by adding a further entry in the blocks list. The blocks are connected by the statements in the
mergePatchPairs section of the blockMeshDict.

N |
(=2}

5 114

[SR

0 1

Figure 8: Two unconnected blocks

Listing 92 shows the blocks sub-dictionary to create two unconnected blocks as they are depicted in Figure 8.

blocks
(

hex (0 1 2 3 4 5 6 7) (10 10 10) simpleGrading (1 1 1)

hex (8 9 10 11 12 13 14 15) (10 10 10) simpleGrading (1 1 1)
)

Listing 92: The blocks entries in blockMeshDict to create the unconnected blocks of Figure 8

In order to generate a connected mesh of the two blocks, the mergePatchPairs section of the blockMeshDict
has to be provided with the two touching patches.

12.4 Grading

In the file blockMeshDict the grading can be defined globally for the edges of the block or for all edges
individually. The grading is specified by the expansion ratio. This is the ratio of the widths of the first and the
last cell along an edge. The direction of an edge is defined in the general definition of a block (see OpenFOAM
Users Manual [39]).

simple Grading

The global grading is defined for all edges parallel to the local x, y and z direction of the block. In Listing 93
the grading of all edges parallel to the local x axis oy the block is one, the grading of all edges parallel to the
local y axis is two and the grading of all edges parallel to the local z axis is three.

simpleGrading (1 2 3)

Listing 93: simpleGrading

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

o7

edgeGrading

With the keyword edgeGrading the grading of each edge of the block is specified individually. Therefore, the
value of this keyword is a list with 12 numbers. The numbering of the edges — the list index corresponds to the
edge number — is defined in the general definition of a block (see OpenFOAM Users Manual [39]). Listing 94

has the same effect as Listing 93.

edgeGrading (1 1 11 2 2 2 2 3 3 3 3)

Pitfall: inconsistent grading

Listing 94: edgeGrading

When a mesh consists of more than one block, then the grading of coincident edges must be consistent, i.e.
these edges must have the same grading. In Listing 95 the grading of the last block is erroneous — the grading
is set to 2 instead of 3. The error message caused by this fault is shown in Listing 96. The message mentions
the blocks 5 and 8. This is correct, because OpenFOAM counts — like C, C++ and many more programming
languages — from 0. Therefore, block 8 is the ninth block.

blocks

hex
hex
hex

hex
hex
hex

hex
hex
hex

(8
(9

16
17
18

20
21
22

24
25

20
21
22

24
25
26

28
29

8
9

5
6

17
18
19

21
22

21
22
23

25
26

5)
6)
7)

9)

(30
(30
(30

(30

5 10) simpleGrading (1 0.5 0.33) // 1
5 2) simpleGrading (1 0.5 1) // 2
5 15) simpleGrading (1 0.5 3) // 3

2 10) simpleGrading (1 1 0.33) // 4

10) (30 2 2) simpleGrading (1 1 1) // 5
10 7 23 27 11) (30 2 15) simpleGrading (1 1 3) // 6

12 9 25 29 13) (30 5 10) simpleGrading (1 2 0.33) // 7
13 10 26 30 14) (30 5 2) simpleGrading (1 2 1) // 8
(10 26 30 14 11 27 31 15) (30 5 15) simpleGrading (1 2 2) // 9

Listing 95: Inconsistent grading

--> FOAM FATAL ERROR:
Inconsistent point locations between block pair 5 and 8
probably due to inconsistent grading.

From function blockMesh::calcMergeInfo ()
in file blockMesh/blockMeshMerge.C at line 294.

FOAM exiting

Listing 96: Error message caused by inconsistent grading

Pitfall: inconsistent discretisation

When a mesh consists of more than one block, then the number of cells of neighbouring blocks must be con-
sistent, i.e. the blocks must have the same number of cells along coincident axes. In Listing 97 the number of
cells of the first block is erroneous — the number is set to 44 instead of 45 along the local z direction. The error
message caused by this faulty definition is shown in Listing 98. The message mentions the blocks 0 and 1. This
error message indicates more clearly — other than Listing 96 — that OpenFOAM counts from 0.

blocks
(

hex (0 5 4 9 13 12) (9 1 44) simpleGrading (1 1 1) // 1

hex (1 2 6 5 9 10 14 13) (2 1 45) simpleGrading (1 1 1) // 2

hex (2 3 7 6 10 11 15 14) (9 1 45) simpleGrading (1 1 1) // 3
);

Listing 97: Inconsistent discretisation

m This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 58

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

N

© o N o «u

---> FOAM FATAL ERROR:
Inconsistent number of faces between block pair 0 and 1

From function blockMesh::calcMergelInfo ()
in file blockMesh/blockMeshMerge.C at line 221.

FOAM exiting

Listing 98: Error message caused by inconsistent discretisation

Interesting observation

The source code also allows to state a list with only one entry. This is not documented in the official User
Manual [39].

Listing 99 prooves this observation in the form of the responsible source code. The first command reads a
scalar list from the input stream is. Then the three valid cases — one, three or twelve entries — are handled If
none of the three branches of the if-else branching is entered an error is reported.

This code listing is a beautiful example of deducting the behaviour of a program from its source code. Un-
fortunately not all parts of OpenFOAMs source code are that easy to read and understand.

scalarList expRatios(is)

if (expRatios.size() == 1)

{
// identical in x/y/z-directions
expand_ = expRatios [0];

}

else if (expRatios.size() == 3)

{
// x-direction
expand_ [0] = expRatios [0];
expand_[1] = expRatios[0];
expand_ [2] = expRatios [0];
expand_[3] = expRatios[0];

// y-direction

expand_[4] = expRatios[1];
expand_ [5] = expRatios [1];
expand_[6] = expRatios[1];
expand_ [7] = expRatios [1];

// z-direction

expand_[8] = expRatios[2];
expand_[9] = expRatios[2];
expand_ [10] expRatios [2];
expand_[11] expRatios [2];

}
else if (expRatios.size() == 12)
{
expand_ = expRatios;
}
else
{
FatalErrorIn
(
"blockDescriptor::blockDescriptor"
"(const pointField&, const curvedEdgelList&, Istream&)"
) << "Unknown definition of expansion ratios: " << expRatios
<< exit(FatalError);

Listing 99: Some content of blockDescriptor.C

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

59

12.5 Parametric meshes by the help of m4 and blockMesh

In blockMeshDict only plain text is allowed, i.e. no symbols can be used. Also, no calculations can be made
by blockMesh with the exception of the keyword convertToMeters.

12.5.1 The blockMeshDict prototype

If the user wants to create parametrised meshes, i.e. properties of the mesh are calculated from certain pa-
rameters, an additional working step is necessary. In order to create a parametric mesh a prototype of the file
blockMeshDict is needed. This prototype contains symbols. Listing 100 shows the block definition of such a
prototype. This block definition is not fully parametric, only the number of cells is calculated. Note, that in
local y direction only one cell is used for discretisation. This indicates a 2D problem.

blocks

(
hex (0 1 54 8 9 13 12) (Nix 1 N1z) simpleGrading (1 1 1) // 1
hex (1 2 6 5 9 10 14 13) (N2x 1 N1z) simpleGrading (1 1 1) // 2
hex (2 3 7 6 10 11 15 14) (Nix 1 N1z) simpleGrading (1 1 1) // 3

)

Listing 100: Block definition of the prototype

12.5.2 The macro programming language m4

In order to replace the symbols of the prototype with meaningful numbers, the prototype has to be processed
by a macro programming language interpreter. In this case the programming language m42* is used. The
interpreter of this language scans the prototype for valid expressions (macros) and replaces them with their
result.

To replace a symbol of the prototype with a meaningful number, a macro has to be defined. Listing 101
shows the definition of the symbols used in Listing 100. In the first line a general variable h is defined. The
second and the third instruction calculate the number of cells in the local x direction based on the variable h.
The last instruction calculates the number of cells in the local z direction.

define(h,2)

define (N1x, ‘eval (9*h))
define (N2x, ‘eval (2xh))

define (N1z, ‘eval (45%h)’)

Listing 101: Block definition of the prototype

This kind of parametrisation allows to specify a multiplier for the number of cells. The discretisation length
can not be refined gradually this way. Specifying the discretisation length requires more complex math than
integer operations.

Complex math - first shot

The builtin mathematic macros of m4 are restricted to integer operations only. As m/ supports system calls,
floating point calculations can be done by an external program. Consequently, the symbol is replaced by the
result of the system call.

In Listing 102 some variables are defined. In line 13 a macro is defined that passes its arguments to the
operating system via a system call. The argument of the command esyscmd gets executed in the command
line. This is the reason for the rather complicated argument of esyscmd. The output of the command echo is
the input of the command bc?®. Note the use of the pipe.

The input of the command echo is composed of three successive operations that need to be performed
by the calculator. The first instruction says that two digits after the decimal point should be used. The
second instruction calculates the difference between the first two arguments and the last instruction divides

24m4 is part of the GNU project. See http://www.gnu.org/software/m4/manual/index.html
25pc is a calculator program. It is part of the GNU project.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

60

http://www.gnu.org/software/m4/manual/index.html

© ® N A W N R

N e
A W N = O

15
16
17
18

this difference by the third argument. These operations compute first the length of the block that needs to be
descretised. Then by dividing this length by the discretisation length the number of cells is calculated.

The output is then formatted by the macro format. Note the formatting string %.0f. This causes the result
to loose its digits after the decimal point. This step is absolutely necessary, because only integers are allowed
to define the number of cells.

// # enter discretization length
define (dx ,0.005)
define (dz,0.005)

// # enter x coordinates
define(x1,0.0555)
define (x2,0.0945)

// # enter heights (z coordinates)
define (H1, 0.20)

// # relDiff: ($1 - $2) / $3 # decimal places truncated (done by format %.0f)
define (relDiff, ‘format (‘%.0f’, esyscmd(echo "scale=2; a=$1-$2; a/$3" | bc))’)

define (N1x, ‘relDiff (x1,0,dx))
define (N2x, ‘relDiff (x2,x1,dx)’)

define (Niz, ‘relDiff (H1,0,dz) ’)

Listing 102: Block definition of the prototype

Listing 102 allows to calculate the number of cells from a specified discretisation length. Due to rounding
operations the specified discretisation length is not exactly met. Listing 103 shows the result after the macros
from Listings 100 and 102 have been processed.

blocks

(
hex (0 1 54 8 9 13 12) (11 1 40) simpleGrading (1 1 1) // 1
hex (1 2 6 5 9 10 14 13) (7 1 40) simpleGrading (1 1 1) // 2
hex (2 3 7 6 10 11 15 14) (11 1 40) simpleGrading (1 1 1) // 3

);

Listing 103: Resulting parametric block definition

Complex math - the better solution

The above described way to do mathematical operations is not very elegant. At this place a more elaborate
solution is presented.

Listing 104 shows some examples taken from a mJ script found in the tutorials. The first statement changes
the delimiter for comments. By changing the delimiter to //, comments have the same delimiter as C or C++.
Remember, OpenFOAM dictionaries follow the C++ syntax, therefore, anything following a // is treated as a
comment. Now, commented lines are always treated as comments by m/ as well as OpenFOAM. See the first
line of Listing 102. There, the // starts a comment for OpenFOAM and the # starts a comment for m4. Setting
the delimiter for comments to be the same as in C++ removes an ambiguity and a possible source for errors.

The second line of Listing 104 redefines the quote delimiter. Changing this delimiters from the standard to
the brackets is probably done to improve readability.

In line 4 of Listing 104 a macro named calc is defined. This macro also uses a system call to outsource the
actual math. In this case the interpreter of the script programming language Perl?® is called. This interpreter
receives a command line argument and an instruction. The command line argument -e tells the interpreter
that only one line of code will follow. The interpreter will interpret this single line and exit. The instruction
print ($1) is a function that prints its argument on the standard output. The argument of the print function
is the argument of the calc macro. Therefore, the mathematical operation can be written directly in the code.
See line 9 for an example. There, the symbols rb and Rb are replaced my m/ by their definition. The argument
of the calc macro is passed via the system call to the Perl interpreter. As Perl is able to do mathematical

26See http://www.perl.org/

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

61

http://www.perl.org/

operations, the interpreter computes the result of the expression and executes the function print. The macro
esyscmd returns the standard output of the command it executed.
Line 12 of Listing 104 shows that even more complex math — e.g. using trigonometric functions — is possible.

changecom (//)
changequote ([,])

define (calc, [esyscmd(perl -e ’print ($1)°)1)

define(rb, 0.5)
define(Rb, 0.7)

define(ri, calc(0.5%(rb + Rb)))

define(pi, 3.14159265)
define(ca0, calc(cos((pi/180)*a0)))

Listing 104: Doing complex math with m4

12.5.3 Conclusion

Parametric meshes can be created by using the macro language m4, this is demonstrated in real live by the
OpenFOAM tutorials. Also the author of this work has done so; up to a level which prompted his colleagues
to make fun of him. This highlights the major shortcoming of using m/ for parametric meshes. At some point,
the parametric geometry creation poses the need for complex math or even high-level data structures. Thus,
we soon are in need of a general purpose programming (or scripting) language.

The mesh in Figure 9 was created with a parametric geometry. It features a variable, user-selectable number
of rotor-paddles ny and stator-baffles n,, with the contraint of that numbers being an integer divisor of 12. The
two numbers n; and n, are independent of each other, as demonstrated in Figure 9. The infinitely thin baf-
fles and paddles are created by preventing selected blocks from getting connected by the use of collocated points.

ny,np € {1,2,3,4,6,12} (7)
In total the mesh shown in Figure 9 consists of 459 blocks. This mesh (most probably?”) would have been

impossible to create using m4. The scripting language of choice for this mesh was python?®, which is an inter-
preted high-level, general-purpose programming language.

27 After some initial attempts, the author gave up.
28https://www.python.org/

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

62

https://www.python.org/

it
it
[

LT

[
Wiy

)
i

Figure 9: The mesh of a stirred tank with a Rushton impeller, stator baffles and an aeration device.

Thus, we conclude this section on using m/ for geometry creation with Eric S. Raymond’s view on m4:

The m4 macro language supports conditionals and recursion. The combination can be used to
implement loops, and this was intended; m4 is deliberately Turing-complete. But actually trying to

use m4 as a general-purpose language would be deeply perverse.
This quote from Eric S. Raymond [14] should not be seen as trying to discourage the use of m/ for simple
task. It is intended to point out the limitations of macro languages. The limitation met and experienced by the

author are the following:
Math In the sections above, we discussed two ways to perform complex mathematical operations within an
m4 script, by utilizing bc or perl via a system call. In python, we can do complex math directly, without

having to perform system calls to programs which, might or might not be installed on the user’s system.

Data structures The mesh generation script for the stirred tank makes use of python’s high-level data struc-
ture reflecting the organisation of the points on the geometry Thus, the resulting script is far better to

understand than an even less complex m4 script.
File I/O With m4, all we can do is macro substitution. Thus, everything comes from one file and goes to

one file. With a high-level language such as python, we can write several files. Thus, all files containing
geometric information can be written by the same script, e.g. the blockMeshDict and the topoSetDict(s).

This improves maintainability and reduces code duplication and manual labour.

12.6 Trouble-shooting
12.6.1 Viewing the blocks with ParaView
A mesh created by blockMesh consists of blocks. Listing 105 shows how ParaView can be used to visualise the

blocks.

paraFoam -block
Listing 105: Visualising the blocks

This way, only the blocks are displayed. ParaView only reads the file blockMeshDict. Figure 10 shows the
blocks of a parametric mesh. It consists of nine blocks. The image shows also the numbers of the vertices.
63

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

11T

Figure 10: The blocks of a parametric mesh consisting of nine blocks.

12.6.2 Viewing the blocks with pyFoam

Troubleshooting can be difficult when blockMesh doesn’t create a mesh and displays some error messages instead.
See Section 12.6.1 for the discussion of a tool which is able to display the blocks as they are defined in
blockMeshDict. This tool even works, when blockMesh fails due to an errorneous definition in blockMeshDict.

13 snappyHexMesh

snappyHexMesh, also referred to as snappy, is a meshing tool that is able to mesh the space around an ar-
bitrary triangulated surface, e.g. an STL surface-mesh. This is generally the case in external aerodynamics.
snappyHexMesh can only be used in conjunction with blockMesh, since it requires a background mesh.

13.1 Documentation

Unfortunately, the complexity of snappyHexMesh outweighs the available on-board documentation. The on-
board documentation (User Guide) can be found in doc/Guides-a4 or doc/Guides-usletter of your lo-
cal OpenFOAM installation or online at http://www.openfoam.org/docs/user/. You find a commented
snappyHexMeshDict at $FOAM_UTILITIES/mesh/generation/snappyHexMesh. This is the case for all utilities
which are controlled by an utility-specific dictionary file, such as decomposePar, topoSet and many more.

Individual features of smappy are in some cases discussed in the release notes of the release with which
these features were rolled out. Another source of good documentation of snappy are presentations held at the
OpenFOAM Workshops. An internet search with appropriate keywords will point the reader to them, since
some of them are publicly available on the internets.

As with any other tool, the reader is encouraged to run the tutorials provided by OpenFOAM and play
around with them. The tutorial cases also provide a good starting base for building your own cases.

13.2 Work flow

The creation of a mesh by snappyHexMesh is following a two step approach:

1. The background mesh is created by blockMesh. This is absolutely necessary to the later work of snappy.
It is advised for the background mesh to consist of all-hex cells with an aspect ratio of 1, i.e. cube-shaped
cells. It is furthermore beneficial to have many intersections of the background mesh’s cell-edges with the
tri-surface.

2. snappyHexMesh then perfoms three basic steps:

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

LIE Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

64

http://www.openfoam.org/docs/user/

(a) Castellating
The tri-surface is approximated by splitting and removing cells outside the tri-surface.

Cell splitting The cells of the background mesh near the objects surface are refined.
Cell removal Cells of the background mesh inside the object are removed.
(b) Snapping
Cell snapping The remaining background mesh is modified in order to reconstruct the surface of
the object.
(¢) Layer addition

Layer addition Additional hexahedral cells are introduced on the boundary surface of the object
to ensure a good mesh quality.

13.3 Example: Bath Tub

With the help of an actual example, we will now discuss some of snappyHexMesh’s features, as problems and
insights most often come with pratical use. Our bath tub has a non-trivial shape, thus we are not inclined to
painfully create the blockMeshDict by hand or by script. For complicated geometries a sophisticated meshing
tool such as snappy is the way to go.

Figure 11: A bath tub. The outlet patch is marked grey at the very bottom of the drain tube.

13.3.1 Boundary layers

Boundary layers are added in the last stage of snappy’s operation. These are added on a per-patch basis. Thus,
it is not possible to add layers only to parts of a patch. On the patch itself, we can control the regions in which
to add a layer by the keyword featureAngle. The operation of the layer addition stage is controlled by the
addLayersControls dictionary of snappyHexMeshDict.

Some of the entries of the addLayersControls dictionary are self-explanatory, such as the layers dictionary
specifying the patches on which to add layers of cells. However, other parameters are not that obvious in their
meaning.

featureAngle

The featureAngle is the angle between two consecutive faces. This parameter controls the behaviour of the
layer addition stage at corners and bends.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 65

111

Figure 12: A badly chosen featureAngle causes snappy to add incomplete boundary layers.

slipFeatureAngle

At the outlet patch of our domain, the layer added to the wall patch meets the outlet patch, i.e. vertices need
to be added to the outlet patch in order to properly grow a layer of cells onto the wall patch. See the left side of
Figure 13. In order to achieve this, we must be able to alter the outlet patch during layer addition even though,
we do not add a layer to the outlet patch itself.

This feature is discussed in the release notes?® of OpenFOAM-2.2.0.

Figure 13: The boundary layers added by snappy. On the left, layer addition went as we intended it to do; on
the right, we see the effect of the (missing) keyword slipFeatureAngle of the addLayersControls dictionary
of snappyHexMeshDict.

Exclude patches

We have to freedom to tell snappyHexMesh to leave patches alone. Thus, during layer addition these patches
remain untouched. This allows us to reverse the effect we achieved with the slipFeatureAngle parameter. By
specifically exluding the outlet from any layer addition activity (see Listing 106), we end up with a collapsing
cell layer at the boundary of the outlet patch, see Figure 14.

layers

{
bathTub
{

nSurfacelayers 2;

29nttp://www.openfoam.org/version2.2.0/snappyHexMesh. php

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 66

111

http://www.openfoam.org/version2.2.0/snappyHexMesh.php

}
outlet
{
nSurfacelayers O;
}
}

Listing 106: The layers sub-dictionary of the addLayersControl dictionary: specifically excluding a patch
from layer addition.

This example of use may most probably not meet practical requirements, however, it demonstrates how
snappy works. The take-away message might be that nSurfaceLayers beats slipFeatureAngle.

A non-academic (read less-useless) theoretical use-case for excluding patches from layer addition might be,
when we later merge different meshes. In that case, we might want to preserve some patches for the merging
operation.

Figure 14: A collapsing boundary layer. Maybe we did not want the mesh that way, however, we told snappy
to create it exactly that way.

13.3.2 Pitfalls, sources of error and hints on malfunction
Run time

If snappyHexMesh is finished in less than a second, then something is wrong. As snappyHexMesh performs up
to three work intensive steps (castellation, snapping and layer addition), a run of snappyHexMesh takes a couple
of seconds or even longer (tens of seconds).

Units

When creating a mesh with snappyHexzMesh different scales (meter vs. millimeter) of the background mesh and
the STL-mesh are a frequent source of error. Check the following things:

1. The unit of the vertex coordinates in blockMeshDict
2. The value of the convertToMeters keyword in blockMeshDict

3. The unit in which the STL was created

14 foamyHexMesh

With OpenFOAM-2.3.03° the new meshing tool foamyHexzMesh was released. This tool is to some degree
similar to snappyHexMesh. The main distinction between foamyHexMesh and snappyHexMesh is that meshes

30http://www.openfoam.org/version2.3.0/foamyHexMesh. php

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 67

111

http://www.openfoam.org/version2.3.0/foamyHexMesh.php

by foamyHexMesh are better aligned with the boundary surfaces. This is achieved by a different mode of
operation. foamyHexMesh generates an internal tetrahedral mesh fitting the boundaries, and then generates
and massages the dual mesh of this internal tetrahedral mesh.

14.1 Crude comparison between a snappy and a foamy bath tub

In this section we compare the way foamy- and snappyHexMesh work on the example of meshing a bath tub.
For this demonstration an STL-surface of a bath tub was created using OpenSCAD.
Figure 15 shows the outline and a part of the background mesh as well as our bath tub.

Figure 15: A bath tub with a background mesh enclosing the STL-surface of the bath tub.

14.1.1 SnappyBathTub

A first, the bath tub is meshed using snappyHexMesh. Figure 16 shows the resulting mesh. We clearly see, that
the interior cells are aligned with the global coordinate axes. At the side walls, this leads to some minor flaws.

R

AR

1
Ruuy

eEEE P

-

1Qﬂ£m£i£i}£&&§

Figure 16: SnappyBathTub

14.1.2 FoamyBathTub

Next, the bath tub was meshed using foamyHexMesh. In Figure 17 we see a good alignment of the cells with
the boundaries. The interior cells are not aligned with the global coordinate axes.

m This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 68

o I e

Figure 17: FoamyBathTub

15 checkMesh

checkMesh is a tool to perform tests on an existing mesh. checkMesh is simply invoked by its name. Like other
tools, checkMesh assumes to be called from the case directory. When checkMesh is to be called from an other
location than the case directory, the path to the case directory has to be specified with the option -case.

Listing 107 shows an error message produced by checkMesh, if checkMesh has been called with no mesh
present. In this case the tool can’t find the files specified in Section 11.1.

--> FOAM FATAL ERROR:
Cannot find file "points" in directory "polyMesh" in times O down to constant

From function Time::findInstance(const fileName&, const word&, const IOobject::readOption,
const word&)

in file db/Time/findInstance.C at line 188.

FOAM exiting

Listing 107: No mesh present

A more thorough testing is performed when checkMesh is called with two additional options. Then checkMesh
performs some further tests.

checkMesh -allGeometry -allTopology

Listing 108: Do more checks

checkMesh has also the -latestTime option like many other OpenFOAM tools. This option is particularly
useful when examining meshes created by snappyHexMesh. snappyHexMesh stores intermediate meshes if it is
not told otherwise. By default, after a completed run of snappyHexMesh there are the background mesh and the
results of the three basic stages of a snappyHezMesh run (castellation, snapping and layer addition). Depending
on which of these steps are active up to four meshes may be present. Restricting checkMesh to the final mesh
reduces runtime and avoids the unnecessary examination of an intermediate mesh.

15.1 Definitions

In order to understand the output of checkMesh it is necessary to define some quantities calculated by checkMesh.

15.1.1 Face non-orthogonality

Non-orthogonality is a property of the faces of the mesh. We need to discriminate between internal faces and
boundary faces.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 69

111

© 0 N o U e W N e

[
S}

Internal faces

Each internal face connects two cells. The non-orthogonality is the angle between the vector connecting the cell
centres and the face normal vector. In Figure 18 the vector connecting the cell centres is denoted d and the
face normal vector®! S.

s
P 6y N

f\d

Figure 18: Definition of non-orthogonality for internal faces

In a perfectly orthogonal mesh the vectors d and S are parallel. If a mesh is non-orthogonal these vectors
draw an angle as in Figure 18. This angle can be calculated from d and S by Eq. 10.

d - S =|[d|[|[S]] cos(6) 8)
d-S _ |ldlISl|lcos(6) _
afisyr— faff s (©))
d-S
0 —arccos(w) (10)

Eq. 10 can also be found in the sources of OpenFOAM in the function faceNonOrthogonality in the file
cellQuality.C??. Listing 109 shows a loop over all faces. For each face the non-orthogonality is computed.
The vectors d and s are the connecting vector between the cell centres, and the face area vector, respectively.
The scalar cosDDotS is the angle 8 of Figure 18.

Note the two precautions that were taken to avoid numerical issues. First, the denominator is the sum of
the product of the magnitudes and VSMALL. VSMALL is a number with a very small value to prevent division by
zero. Second, the argument of the acos function is min(1.0, (d & s)/(mag(d)*magS + VSMALL)). Keeping
the argument of the arc-cosine equal or below 1 makes perfectly sense, because the arc-cosine is defined only
for values between -1 and 1. The limit of -1 is inherently ensured. The inner product of two vectors is always
positive. VSMALL is also positive.

forAll (nei, facel)

{
vector d = centres[nei[faceI]] - centres[own[faceIl];
vector s = areas[facelIl;
scalar magS = mag(s);

scalar cosDDotS =
radToDeg (Foam::acos(min(1.0, (d & s)/(mag(d)*magS + VSMALL))));
result [faceI] = cosDDotS;

Listing 109: A detail of the function faceNonOrthogonality in the file cel1Quality.C

The non-orthogonality reported by checkMesh is the angle 6 of Figure 18. Therefore the reported non-
orthogonality lies in the range between 0 and 90. A non-orthogonality of 0 means the mesh is orthogonal and
consists of hexahedra (cuboids) or regular tetrahedra. Listing 113 shows the output of checkMesh. In this case
the mesh is orthogonal, the maximum and average non-orthogonality is 0.

Listing 115 shows the output of checkMesh in case of a non-orthogonal mesh. Listing 116 indicates that a
non-orthogonality of above 70 triggers checkMesh to issue a warning message.

31The face normal vector or face area vector is a vector normal to a face. The length of this vector is equal to the area of the
face.

321n the file cellQuality.C there are two methods defined: nonOrthogonality() and faceNonOrthogonality(). Comparing the
code of this two methods reveals, that they compute the same thing. However, the method nonOrthogonality() returns the affected
cells, whereas faceNonOrthogonality () returns the affected faces.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

70

Boundary faces

Non-orthogonality is also defined for boundary faces. Figure 19 shows a schematic boundary face with its face
center f. Non-orthogonality of boundary faces is defined as the angle in degrees between the face area vector S
and the vector d, which connects the cell center P and the face center f.

S
P d A

A

Figure 19: Definition of non-orthogonality for boundary faces

const labelUList& faceCells = mesh_.boundaryMesh() [patchI].faceCells();
const vectorField::subField faceCentres = mesh_.boundaryMesh () [patchI].faceCentres();
const vectorField::subField faceAreas = mesh_.boundaryMesh() [patchI].faceAreas();

forAll (nei, facel)

{
vector d = faceCentres[facel] - centres[faceCells[faceI]l;
vector s = areas[facell;
scalar magS = mag(s);

scalar cosDDotS =
radToDeg (Foam::acos(min(1.0, (d & s)/(mag(d)*magS + VSMALL))));
result [globalFaceI++] = cosDDotS;

Listing 110: A detail of the function faceNonOrthogonality in the file cel1Quality.C

15.1.2 Face skewness

OpenFOAM defines skewness in a mesh different than other tools, e.g. Gambit. The reason for this OpenFOAM-
specific definition is that this definition is associated with the definition of a skewness error in [26] as part of
mesh induced discretisation errors.

Skewness is a property of the faces of the mesh. We need to discriminate between internal faces and boundary
faces.

Internal faces

Each internal face connects two cells. Figure 20 shows the cell centres P and N of two adjacent cells. The
face facepy is the face connecting these two cells. The point F' is the face centre of the face facepy. The line
¢ = PN connects the cell centres. This connecting line intersects with the face facepy. This intersection point
I divides the line ¢ into the two parts ¢; and cs.

To calculate the location of I the length of ¢y is of key interest because the skewness is defined in Eq. 11.
The location (the vector to) the points P, N and F are easily obtained. From this three vectors d,, d,, and c
is computed. With d, and d,, the inner product with the face area vector A is computed to obtain dOwn and
dNei?3.

33d0wn and dNei are actual variable names. Therefore these symbols are written in typewriter font.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

71

P dOwn

C1

]
facepn N

Figure 20: Definition of skewness of internal faces

skewness = @ (11)
|PN|
d,=F—-P (12)
d,=F-N (13)
c=N-P (14)
d, - Ay
dOwn = (15)
1A£l
d, - Ay
dNei = (16)
[1A£l
L(XPN) =« (17)
dOwn dOwn + dNei dOwn + dNei
S = = = 18
cos(a) o P, el (18)
dOwn
P — 19
a= dOwn + dNel|| cll (19)
I = P + ciC (20)
F—1
skewness = I I (21)

Note that both P and c are vectors. The reader hopefully excuses this lack of ~consistency in mathematical
notation. P denotes the position vector of the point P. In this case the symbol Pis prefered to P in order to
use symbols that can be found in Figure 20.

Listing 111 shows a detail of the function faceSkewness from the file ce11Quality.C3%. There a loop over
all internal faces is traversed. The loop body contains the calculation of the skewness. First dOwn and dNei
are computed. Then the location of the point I is determined. The variable faceIntersection of the type
point contains the position vector to the point I — the point at which the connection line between the cell
centres intersects the face. Finally, the skewness is calculated (compare Eq. 21). Notice the precaution against
a possible division by zero (adding VSMALL to the denominator).

forAll (nei, facel)

34In the file cellQuality.C there are two methods defined: skewness() and faceSkewness(). Comparing the code of this
two methods reveals, that they compute the same thing. However, the method skewness() returns the affected cells, whereas
faceSkewness() returns the affected faces.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

72

Bow N

© o N o «

11
12
13
14
15
16
17
18

20

scalar dOwn = mag
(

(faceCtrs[faceI] - cellCtrs[own[faceI]]) & areas[faceIl
) /mag (areas [faceIl);

scalar dNei = mag
(

(cellCtrs[nei[faceI]] - faceCtrs[faceI]) & areas[facell
) /mag (areas [faceIl);

point facelntersection =
cellCtrs[own[faceI]]
+ (dOwn/(dOwn+dNei))*(cellCtrs[neil[faceI]] - cellCtrs[own[faceIll);

result[facelI]l =
mag (faceCtrs[facel] - facelntersection)
/(mag(cellCtrs[neilfaceI]l] - cellCtrs[own[faceIl]l) + VSMALL);

Listing 111: A detail of the function faceSkewness in the file cel1Quality.C

Boundary faces

Skewness is also defined and checked for boundary faces. Figure 21 shows the sketch of a boundary face with
its face center Fo. The vector d from the cell center P to the face center F is depicted in red. At the point
F¢ we see the face normal vector n. If we project the vector d on the vector n we gain the face-intersection
point Fy. This is the point, where the face normal departing from the cell center intersects with the face. The
face-intersection does not necessarily need to be part of the face, as it is the case in Figure 21.

We then compute the vector f, which is the connection between the points F; and Fo. The ratio of the
magnitudes of the vectors f and d defines the skewness of a boundary face.
Listing 112 shows the code that computes the skewness of the boundary faces. The points P and F¢ are

Iy

Figure 21: Definition of skewness of boundary faces

returned by the methods faceCells() and faceCentres(). The normal vector n is easily computed from the
face-area vector given by the method faceAreas().

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

73

© 0 N o U oA W N e

I T T T N N = T
© G A W R = O O WO A ® N = O

n = faceAreas[facel]/mag(faceAreas[facell) (22)
d = faceCentres[faceI] - cellCtrs[faceCells[faceIl] (23)

F_’} = cellCtrs[faceCells[faceI]] + ((faceCentres[facel] - cellCtrs[faceCells[faceI]])&n)x*n

(24)

Ff=P+(d - n)n (25)

f = faceCentres[facel] - facelntersection (26)
f=Fo—F (27)

label globalFacel = mesh_.nInternalFaces();

forAll (mesh_.boundaryMesh (), patchI)
{
const labelUList& faceCells =
mesh_.boundaryMesh () [patchI].faceCells () ;

const vectorField::subField faceCentres =
mesh_.boundaryMesh () [patchI].faceCentres () ;

const vectorField::subField faceAreas =
mesh_.boundaryMesh () [patchI].faceAreas();

forAll (faceCentres, facel)
{

vector n = faceAreas[facel]/mag(faceAreas[facel]);

point faceIntersection = cellCtrs[faceCells[faceIl]
+ ((faceCentres[faceI] - cellCtrs[faceCells[faceI]])&n)*n;

result [globalFaceI++] = mag(faceCentres[facel]l - facelntersection)
/(
mag (faceCentres[faceI] - cellCtrs[faceCells[faceI]])
+ VSMALL
)

Listing 112: A detail of the function faceSkewness in the file ce11Quality.C

15.1.3 Face concavity

pending

15.1.4 Face warpage

A face is warped, when its vertices do not lie within a plane. Figure 22 shows a simplified situation of a
warped face. Any three points, which do not fall onto a single line, span a plane. In Figure 22 the area vec-
tor Sy of the triangle A457 is parallel to the face area vector Sy. Thus, we identify point 6 as being out-of-plane.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. &

111

Figure 22: Face warpage

If we decompose the face into individual triangles, we can compare the individual triangle area vectors to the
face normal vector. In Figure 22 a crude decomposition is chosen for simplicity. In OpenFOAM’s internals, the
individual triangles are defined by the face center and two consecutive vertices of the face. As, face vertices need
to be stored consecutive, a simple loop over the vertices of a face is sufficient to generate all individual triangles.
Thus, in OpenFOAM’s implementation of the test for warpage, the face of Figure 22 would be decomposed into
four triangles, as indicated by the thin dashed lines.

We bear in mind, that in OpenFOAM a face area vector has two important properties. It is normal to
the face’s plane and its magnitude is proportional to the face’s area®®. By diving the face area vector by its
magnitude we gain the face normal vector, see (29).

OpenFOAM checks for warpage by computing the inner product of the triangle area vectors with the face
normal vector, and summing up the results, see (30). This sum is equal to the magnitude of the face area vector,
when all vertices are in-plane. If the two vectors of an inner product are not parallel, then the magnitude of
the inner product is smaller by the cosine of the enclosed angle.

la-b| = [lal|[|b]| cos(a) (28)
Sy

nf= — 29

=184 (29)

Sr=> ng-s; (30)

15.1.5 Cell concavity

When a cell is concave

15.2 Pitfalls

The results of checkMesh need to be taken with a grain of salt. Therefore, it is helpful to know how checkMesh
defines the qualitity measures it tests for (Section 15.1) and also to know about the shortcomings of the tests
performed by checkMesh (Section 15.2).

The tests performed by checkMesh do not necessarily guarantee the mesh to be suitable for simulation.
Furthermore, if a mesh fails a test, that does not necessariliy mean that it is unsuitable for calculation.

15.2.1 Mesh quality - aspect ratio

checkMesh performs a number of quality checks. However, the user has to be careful. checkMesh does only
check if a mesh makes a simulation impossible. There are some situations in which checkMesh does not issue
an error or a warning, however, a mesh can nevertheless be unsuitable for a successful calculation.

The aspect ratio is the ratio of the largest and the smallest dimension of the cells. For the aspect ratio there
are no limits. Listing 113 shows the output of checkMesh when a mesh with high aspect ratio cells is tested.

358ince a length can not be an area in terms of physical units, we avoid the statement, that the face normal vectors length is the
face’s area. However, the factor of proportionality is 1.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. &

111

Although checkMesh does not complain, the mesh is not suitable for simulation. Even with extremely small
time steps numerical problems appear.

Checking geometry...
Overall domain bounding box (0 0 0) (0.1 0.1 0.01)
Mesh (non-empty, non-wedge) directioms (1 1 1)
Mesh (non-empty) directions (1 1 1)
Boundary openness (-9.51633e-17 1.17791e-18 -4.51751e-17) OK.
Max cell openness = 1.35525e-16 OK.
Max aspect ratio = 100 OK.
Minimum face area = 2.5e-07. Maximum face area = 2.5e-05. Face area magnitudes OK.
Min volume = 1.25e-09. Max volume = 1.25e-09. Total volume = 0.0001. Cell volumes O0OK.
Mesh non-orthogonality Max: O average: 0
Non-orthogonality check O0K.
Face pyramids OK.
Max skewness = 2e-06 OK.
Coupled point location match (average 0) OK.

Mesh O0K.

End

Listing 113: checkMesh output for a mesh with high aspect ratio

15.2.2 Mesh quality - skewness

There are different ways to calculate the skewness of a finite volume cell. To test whether checkMesh complains
about high skewness, a mesh is distorted by the use of edge grading. Figure 23 shows this mesh. Parallel edges
are graded alternately — alternating between the expand ratio and its reciprocal value. Listing 114 shows the
grading settings. The test case for this examination is the cavity case of icoFoam. This case can be found in
the tutorials.

hex (01 2 3 4 5 6 7) (20 20 2) edgeGrading (3 0.33 3 0.33 1111 111 1)

Listing 114: Block definition in blockMeshDict to achieve high skewness

Figure 23: A distorted mesh

checkMesh issues no warnings for the value pair 3 and 0.33. The values 4 and 0.25 cause a warning about severly
non-orthogonal faces.

However, a simulation is impossible for much lower values. The simulation runs for the value pair 1.33 and
0.75. The values 1.4 and 0.714 cause the simulation to crash. The limits of stability of a simulation are therefore
reached earlier than the limits of checkMesh.

To conclude this section, the user should bear the folling statement in mind. Numerical problems of a sim-
ulation may be caused by bad mesh quality. In some cases — like the one presented above — bad mesh quality is

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 76

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

the root of the problem, but checkMesh issues no warnings. However, the values of the quality characteristics
may give a hint. Some manuals of CFD software propose numerical ranges for characteristics like aspect ratio
to ensure good quality.

Checking geometry...
Overall domain bounding box (0 0 0) (0.1 0.1 0.01)
Mesh (non-empty, non-wedge) directions (1 1 1)
Mesh (non-empty) directions (1 1 1)
Boundary openness (4.23516e-18 9.03502e-18 1.60936e-16) OK.
Max cell openness = 1.67251e-16 O0OK.
Max aspect ratio = 3.63059 OK.
Minimum face area = 1.42648e-05. Maximum face area = 7.1694e-05. Face area magnitudes OK.
Min volume = 1.03854e-07. Max volume = 1.69673e-07. Total volume = 0.0001. Cell volumes 0K

Mesh non-orthogonality Max: 69.4798 average: 32.8092 Non-orthogonality check OK.
Face pyramids O0OK.
Max skewness = 2.35485 O0K.
Coupled point location match (average 0) OK.
Mesh OK.

End

Listing 115: checkMesh output for the distorted mesh; grading ratios 3 and 0.33

Checking geometry...
Overall domain bounding box (0 0 0) (0.1 0.1 0.01)
Mesh (non-empty, non-wedge) directioms (1 1 1)
Mesh (non-empty) directions (1 1 1)
Boundary openness (4.23516e-18 -6.21157e-18 1.18585e-16) OK.
Max cell openness = 2.37664e-16 O0OK.
Max aspect ratio = 4.23706 OK.
Minimum face area = 1.23181e-05. Maximum face area = 8.67874e-05. Face area magnitudes OK.
Min volume = 1.00882e-07. Max volume = 1.84055e-07. Total volume = 0.0001. Cell volumes 0K

Mesh non-orthogonality Max: 73.1635 average: 36.2131
*Number of severely non-orthogonal faces: 80.
Non-orthogonality check OK.
<<Writing 80 non-orthogonal faces to set nonOrthoFaces
Face pyramids OK.
Max skewness = 2.93978 O0K.
Coupled point location match (average 0) OK.

Mesh OK.

End

Listing 116: checkMesh output for the distorted mesh; grading ratios 4 and 0.25

15.2.3 Possible non-pitfall: twoInternalFacesCells

If a mesh for a two-dimensional simulation is created and checked using checkMesh with the -allTopology
option enabled?%, then checkMesh will issue a message like in Listing 117. This message indicates, that there
are cells present with only two internal faces. This message can be ignored when 2D meshes are concerned. The
corner cells of a rectangular mesh have — by definition — only two internal faces.

Checking topology...
Boundary definition OK.
Cell to face addressing OK.
Point usage OK.
Upper triangular ordering O0OK.
Face vertices O0K.
Topological cell zip-up check O0OK.
Face-face connectivity OK.

36When the -allTopology option is enabled, checkMesh performs two additional topological checks. Checking the face connec-
tivity is one of these checks.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. m

111

<<Writing 4 cells with two non-boundary faces to set twolInternalFacesCells
Number of regions: 1 (0K).

Listing 117: checkMesh output for a 2D mesh with ~allTopology option set.

If this message appears when a 3D mesh is examined, then there is probably some error in the definition of
the mesh. A cell in a 3D mesh should have at least three internal faces. A message stating the presence of cells
with two internal faces in a 3D mesh indicates non-connected regions.

15.3 Useful output

The output of checkMesh in Listing 117 also shows another interesting thing to know about checkMesh. The
line «Writing 4 cells with two non-boundary faces to set twoInternalFacesCells tells the user that
checkMesh created a set of cells that are found to have some problems.

Figure 24 shows the content of the case which resulted in Figure 23. There we see a directory named sets
inside the polyMesh folder. The sets folder was created by checkMesh and inside this folder checkMesh stores
any sets it creates. The file names are rather self-explanatory, e.g. the file skewFaces contains all faces which
failed the test for skewness. All these cell or face sets can be viewed with para View.

)

tp
)
| constant
| polyMesh
blockMeshDict
boundary
faces
neighbour
owner
points
sets
lowQualityTetFaces
nonOrthoFaces
skewFaces
underdeterminedCells
. _transportProperties
. _system
controlDict
fvSchemes
fvSolution

Figure 24: Sets created by checkMesh in the sets directory.

16 Other mesh manipulation tools

16.1 topoSet

The tool topoSet creates point, face or cell sets from a geometric definition. There are a number of ways to
define the geometric region containing the intended points, faces or cells.

16.1.1 Usage

The dictionary topoSetDict is used to define the geometric region. Find some examples in the tutorials using
the following command.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

78

find $FOAM_TUTORIALS -name topoSetDict

Listing 118: Find examples for the use of topoSet

A face or cell set will contain only faces or cells whose centres lie within the specified geometric region.

16.1.2 Pitfall: The definition of the geometric region

To demonstrate the function of topoSet a cell set was defined for the cavity tutorial-case. The mesh of the
cavity case is 1 x 1 x 0.1 m and the box defining the cell set was chosen to be 0.5 x 0.5 x 0.05 m. The dimensions
of this box are simply half the dimensions of the mesh. However, only cells whose cell centre is located in the
box are contained in the cell set. As the mesh is one cell in depth and 0.1 m in depth, all the cell centres are
exactly at z = 0.05m. Due to inevitable numerical errors in calculating the cell centre?”, the numerical errors
decided whether a cell was included into the cell set or not.

To avoid this error, always make sure the geometric region contains all the intended cells.

Figure 25: A faulty cell set definition. The red cells are part of the cell set. All other cells are blue.

16.1.3 Pitfall: renumbered mesh

At the point of writing the utility renumberMesh does not consider cell sets®®. If renumberMesh is called after
cell sets were created by topoSet, the cell set is invalid. The reason for this is, that the cell labels of the cell
set remain unchanged as renumberMesh completely relabels the mesh. Thus, the cell set still exists and the
number of cells is unchanged, however, as other cells bear the labels of the original members of the cell set, the
cell set is invalid.

To resolve this problem, topoSet needs to be run after renumberMesh. This even works in parallel, when the
case has been decomposed.

16.2 setsToZones

The utility setsToZones serves the purpose to:

Add pointZones/faceZones/cellZones to the mesh from similar named pointSets/faceSets/cellSets

[39].
This utility is needed when we create some cellSets which we later want to use e.g. with a functionObject (the
cellSource functionObject acts on all cells or on a cellZone). cellSets can be created with topoSet. After we
ran topoSet we simply run setsToZones without any further parameters or providing a dictionary. setsToZones
creates cellZones which contain the same cells as the corresponding cellSets.

37The location of the cell centre is not stored in any file, thus this quantity has to be computed.
38This behaviour was reported in bug report 1377 (http://openfoam.org/mantisbt/view.php?id=1377).

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 79

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

http://openfoam.org/mantisbt/view.php?id=1377

16.3 refineMesh

The tool refineMesh is used — just as the name suggests — to refine a mesh.

16.3.1 Usage

First a cell set has to be defined, this can be done using the tool topoSet.
With the dictionary refineMeshDict the rules for refining a particular cell set can be stated. When rules
have been defined in refineMeshDict , then the command line option -dict has to be used.

Figure 26: An example of a refined mesh. The refined region is marked in red.

16.3.2 Pitfall: no command line parameters

If the tool refineMesh is called without any command line parameters then the whole mesh is refined. For
refineMesh to obey the rules set in the refineMeshDict the command line option -dict has to used when
calling refineMesh. See this useful post in the CFD-Online Forum http://www.cfd-online.com/Forums/
openfoam-meshing-utilities/61518-blockmesh-cellset-refinemesh.html#post195725

Notice the different meaning of the —~dict command line option of the tools topoSet and refineMesh. If you
are in doubt about this difference, check the summary of the command line usage printed by the ~help option.

16.4 renumberMesh
16.4.1 General information

The tool renumberMesh modifies the arrangement of the cells of the mesh in order to create lower bandwidth for
the numerical solution. For further information about the role and the influence of the bandwidth in numerical
simulation see books on the numerical solution of large equation systems, e.g. [25].

Renumbering the mesh can reduce computation times as it re-arranges the data to benefit the numerical
solution of the resulting equation system. The benefit of renumbering the mesh strongly depends on several
factors. However, testing is recommended.

Renumbering the mesh even has an effect at the simplest possible simulation case — the cavity case of the
tutorials. This mesh consists of a single block and it is quasi 2D (i.e. it is only 1 block in depth). The mesh
resolution was chosen to 40 x 40 x 1, resulting in 1600 cells. icoFoam was run for 10s. Execution time was
reduced by renumberMesh from 6.18s to 6.08s.

A simulation with a mesh consisting of 120000 cells defined by 9 blocks was run for 5s of simulated time
with twoPhaseFEulerFoam. Execution time was reduced by renumberMesh from 9383.81s to 9273.13s.

Even though the reduction of execution time is small in this examples, this reduction comes at no cost.
Running renumberMesh takes little time and at run-time of the simulation no additional work has to be done.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 80

111

http://www.cfd-online.com/Forums/openfoam-meshing-utilities/61518-blockmesh-cellset-refinemesh.html#post195725
http://www.cfd-online.com/Forums/openfoam-meshing-utilities/61518-blockmesh-cellset-refinemesh.html#post195725

Run renumberMesh before any other tools which generate sets or zones. Why
the order of execution of certain tools is significant is explained in Section
16.4.3 on a case which went slightly wrong.

16.4.2 Background

The discretized finite volume problem results in a linear equation system, which is usually expressed in matrix-
form.

Ax=Db (31)

The vector x contains the field values at the cell centers. The matrix A contains non-zero elements for each
pair of neighbouring cells. This is a consequence of our assumption that only adjacent cells interact. If we
used some sort of higher order discretisation or interpolation, we might get into a situation where also second
neighbours interact. However, for sake of ease, we limit ourselves in this discussion to direct neighbours.

Regardless of our computational mesh being one-, two- or three dimensional, we label all cells with positive
ascending integers. Thus, we can store the values of a scalar field into a vector. The number of elements of this
vector (N) is equal to the number of cells in our domain. Consequently, the matrix A is of the size N x N.
However, as only adjacent cells interact, most of the elements of A will be zero-entries.

If the cells with the labels ¢ and j are adjacent, then the elements a;; and aj; of A will be non-zero. Since
we focus on the general structure of A we do not care whether a;; equals aj;, or if both of them are actually
non-zero>’.

The arrangement of the cells — or, to be more precise, the labelling — has a strong impact on the structure
of the matrix A, i.e. the distribution of the non-zero elements.

A simple example

Here we examine the effect of cell labelling with a very simple example. Figure 27 shows a simple mesh with 8
cells. Two different cell labelling schemes are indicated by the numbers inside the cells.

In Figure 28 we see the connections between the cells depicted as a graph. A N x N matrix can be from
the interaction perspective seen as a graph with N nodes. An edge between the nodes ¢ and j represents the
non-zero elements a;; and a;;.

Figure 27: A simple mesh with 8 cells and different cell labelling schemes.

R ZOZ0

Figure 28: The connectivity graph of our mesh.

Figure 29 shows the corresponding matrix structure. The labelling scheme on the right hand side of Figures
27 and 28 results in a matrix with a lower bandwidth.

39The upwind differencing scheme causes the downstream cell to depend on the upstream cell. However, the upstream cell is not
directly influenced by the downstream cell.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

81

¥ K XK X X X OOl
* X K X X X O Ot

¥ X * X O O O O
* X X ¥ O O O O

O O ¥* ¥ OO % *x|O
* ¥ ¥ O % ¥ ¥ OIN
* %k OO % ¥ O OlWw
O O ¥ ¥ O O ¥ ¥ |~
O % ¥ ¥k O *x ¥* x|
* ¥ ¥ O % ¥ ¥ OO
* ¥ O O ¥%x ¥ O O
O O OO % ¥ ¥ x|O
OO OO * ¥ X ¥ |
O O ¥ ¥ X X ¥ XD
O O % ¥ X ¥ ¥ ¥ | W

O % ¥ X O X ¥ ¥ |

N O UL W~ O
N O U W N O

Figure 29: The matrix structure. A * denotes a non-zero element. Notice the lower bandwidth of the matrix on
the right hand side. The number of zero-entries is equal, however, the different distribution leads to a different
numerical behaviour.

16.4.3 Pitfall: sets and zones will break my bones

The use of renumberMesh carries a certain risk. In simulation cases which make use of tools like topoSet and
renumberMesh, the order in which those tools are invoked is of importance.

The reason behind this, is the way OpenFOAM stores its mesh information. The only actual geometric
information is stored in the list of points in the file constant/polyMesh/points. The faces are defined via the
point labels of the points defining the mesh. Thus, if the points Py, P,,, P,and P, define a face, then the entry
in constant/polyMesh/faces for this very face reads (k m u w). The same principle applys for the definition
of cells. There, the labels of the faces defining the cell are stored. This way, no redundant information is stored.
If we define a cellSet with topoSet e.g. all cells within a certain geometrical region we simply store the cell
labels of all cells for which the condition is fulfilled. Thus, if we now run renumberMesh, we shuffle the cells
within the mesh. No actual change is applied in the mesh, however, the cell with the label A which was at the
location (xa,ya,za) before renumbering, may or most certainly will be at location (xp,yg5,25) with B # A
after renumbering.

Figure 30 shows the simulation domain of an aerated stirred tank. The red cells are part of a cellZone
on which source terms using the fuOptions mechanism act?®. A run of renumberMesh after the cellZone was
created caused the cellZone to get scrambled. However, the simulation worked nontheless and yielded some
unexpected results.

40Have a look on the injection tutorial of twoPhaseFEulerFoam-2.3.x.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

82

Figure 30: Left: The cut-away of the walls of a stirred tank with the rotor (blue) and the aeration device
(red). The aeration device is a cellZone on which source terms are applied via the fuOptions mechanism in
OpenFOAM-2.3.x.

Right: The stirred tank was simulated using parallel processes. After decomposing the domain, a parallel
renumbering of the mesh was conducted. Renumbering the subdomains scrambled the cellZone within their re-
spective subdomains. The transparent iso-volume shows the gas-phase volume fraction 0.25 s into the simulation.
The cells of the cellZone act as source for the gas-phase, although not on their original location.

16.5 subsetMesh
16.6 createPatch
16.7 stitchMesh

17 Initialize Fields

17.1 Basics

There are two ways to define the initial value of a field quantity. The first is to set the field to a uniform value.
Listing 119 shows the 0/U file of the cavity tutorial. There the internal field is set to a uniform value.

If a non-uniform initialisation is desired, then a list of values for all cells is needed instead. Listing 126 shows
some lines of such a definition. Entering such a nonuniform list by hand would be very tiresome. To spare the
user of such a painful and exhausting task, there are some tools to provide help.

Y R i k= CHt —kommmmm e *\
| ========= | |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 2.1.x |
| N/ A nd | Web: www.OpenFOAM. org I
| \\/ M anipulation | |
ko mmm o e - */
FoamFile
{

version 2.0;

format ascii;

class volVectorField;

object U;
}

// * % x % % % % % % % * * * * * % % % *x *x *k %k % % % % * * * * * * *x x x x x [/
dimensions [01 -1 00 0 0];

internalField uniform (0 0 0);

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

1 Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

83

boundaryField

{
movingWall
{
type fixedValue;
value uniform (1 0 0);
}
fixedWalls
{
type fixedValue;
value uniform (0 O 0);
}
frontAndBack
{
type empty;
}
}

[/ ok okok ok sk ok ok ok sk ok ok ok ok sk ok ok ok sk ok sk ok sk ok ok ok ok ok ok sk ok sk ok ok sk ok ok ok sk ok ok ok ok ok ok ook kok kok kok ok ok ok kok sk ok k ok kokkok ok kokkokkokx [/ /

Listing 119: The file 0/U of the cavity tutorial

17.2 setFields

setFields is a utility that allows to define geometrical regions within the domain and to assign field values
to those regions. setFields reads this definitions from a file in the system-directory — the setFieldsDict. To
initialize the field quantities setFields has to be executed after creating the mesh. setFields needs to read all
files defining the mesh*!.

In Listing 120 a box is defined in which the field alphal is set to a different value.

R e et e k= CHt —h——mmmmmmm e *\
| ========= |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
I \\ / 0 peration | Version: 2.1.x |
| \\ / A nd | Web: www.0O0penFOAM. org |
| \\/ M anipulation | |
ko m oo oo - */
FoamFile
{

version 2.0;

format ascii;

class dictionary;

object setFieldsDict;
}

// % % % % % * * * * % % % % *x *k %k % % % % % * * * * * *x % X X X *x *x *x *x *x *x [/
defaultFieldValues
(
volScalarFieldValue alphal 1
)

regions
(
boxToCell
{
box (-0.3 -0.3 0) (0.3 0.3 0.26);

fieldValues
(
volScalarFieldValue alphal 0O
)
}
)

// >k >k >k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k %k %k %k >k >k >k >k 3k 3k 3k 3k 3k 3k 3k > > >* % %k %k >k >k > >k >k 3k 3k 3k 3k 3k 3k >k >k % % % % %k %k %k %k %k >k >k >k >k >k % %k %k * %k % % % //

Listing 120: setFieldsDict

410nly the file neighbour can be missing for setFields not to crash.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

84

Pitfall: Geometric region is not part of the domain

If the geometric region, in which to initialise a field with a specified value, lies outside the domain, setFields
does not issue any warning or error message.

Pitfall: Geometric region covers the whole domain

This may happen if the geometric region is defined with respect to the vertex coordinates found in blockMeshDict.
When the vertex coordinates are entered in millimeters — and convertToMeters is set appropiately — then it may
happen, that the geometric region, based on the vertex coordinates in millimeters, is too large by the factor of
1000.

Listing 121 and 122 show the root of such a situation. The plan is to create a box and initialise it in a way,
that the domain is half filled with one phase. The definition of the box in the setFieldsDict relies solely on the
vertex coordinates ignoring the scaling factor convertToMeters resulting in a way too large box. After executing
setFields the domain is completely filled with one phase instead of half filled.

convertToMeters 1e-3;

vertices

(

(0 0 0)
(50 0 0)
(50 0 250)
(0 0 250)
(0 50 0)
(50 50 0)
(50 50 250)
(0 50 250)
)
Listing 121: blockMeshDict entry for a box of 50 x 50 x 250 mm
regions
(
boxToCell
{

box (0.0 0.0 0.0) (50.0 50.0 125.0);

fieldValues
(

volScalarFieldValue alphal 0
)

Listing 122: setFieldsDict entry for a box of 50 x 50 x 125 m

Pitfall: Field not found

If the setFieldsDict specifies a field which is not present, then OpenFOAM issues an error message similar to
Listing 123. In this case the file setFieldsDict was copied from a case which uses the old naming scheme of
twoPhaseEulerFoam, i.e. alpha instead of alphal. See Section 37.1.1 for further information about the nam-
ing scheme. Therefore, the dictionary contained a definition for the field alpha which was not present in the
0-directory.

Setting field default values
--> FOAM Warning :
From function void setCellFieldType (const fvMesh& mesh, const labellList& selectedCells,
Istream& fieldValueStream)
in file setFields.C at line 103
Field alpha not found

--> FOAM FATAL IO ERROR:

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

85

wrong token type - expected word, found on line 19 the label 1

file: /home/user/OpenF0AM/user-2.1.x/run/twoPhaseEulerFoam/bubbleColumn/system/setFieldsDict::
defaultFieldValues at line 19.

From function operator>>(Istream&, word&)
in file primitives/strings/word/wordI0.C at line 74.

FOAM exiting

Listing 123: Missing field

17.3 mapFields

mapFields is a utility to transfer field data from a source mesh to target mesh. This may be useful after the
mesh of case has been refined and existing solution data is to be used for initialising the case with the refined
mesh. mapFields preserves the format of the data, if the source data was stored in binary format, the target
data will also be binary.

To use mapFields the file mapFieldsDict has to be existent in the system folder of the case*?. mapFields
expects as the only mandatory argument the path to the source case. The current directory is assumed to be
the case directory of the target case. If there is no specification regarding time, the latest time steps of both
cases are processes. That means the latest time step of the source case is mapped to the latest time step of the
target case.

Listing 124 shows the last lines of output of mapFields. With lines like interpolating alpha mapFields
indicates that it is processing some field data. Even when source and target meshes are equal and no interpo-
lation is needed, mapFields displays lines like interpolating alpha anyway.

Source time: 0.325
Target time: O
Create meshes

Source mesh size: 81000 Target mesh size: 273375
Mapping fields for time 0.325

interpolating alpha
interpolating p
interpolating k
interpolating epsilon
interpolating Theta
interpolating Ub
interpolating Ua

End

Listing 124: Output of mapFields

17.3.1 Pitfall: Missing files

mapFields issues no warning or error message when the source case contains no data. Listing 125 shows the
output of mapFields as the target case contained no 0-directory. Only the missing lines containing statements
like interpolating alpha indicate that something is amiss and no field data is processed.

Source time: 0.325
Target time: O
Create meshes

Source mesh size: 81000 Target mesh size: 273375

Mapping fields for time 0.325

421n the most basic case mapFieldsDict contains no other information than the header and empty definitions. Although this file
may seem of no use, it has to exist in the system folder, and it has to contain the header and the empty definitions.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 86

111

End

Listing 125: Output of mapFields; Missing target 0-directory

17.3.2 Pitfall: Unsuitable files

In the files containing the field data the values of the boundary fields as well as the values of the internal fields
can be entered homogeneously (by the keyword uniform) or inhomogeneously (with the keyword nonuniform).
Inhomogeneous field values have to be entered as a list of values. This list is preceded by the number of entries
as well as the nature of the value. Listing 126 shows the beginning lines of the definition of a nonuniform vector
field. The general syntax for such a list is the following:

nonuniform List<TYPE> COUNT (VALUES)

the list. A wrong value of COUNT leads to reading errors.

If data is to be mapped from a source case, the source case’s data will always be stored as a nonuniform list.
Otherwise, mapping the data would make no sense, as uniform fields are most easily defined. If the data of the
target case is uniform, then mapping makes no problems.

If the data of the target case is nonuniform — for whatever reason — then it is necessary that the nonuniform
lists have the same length. Otherwise, mapFields will exit with an error message like in Listing 127. The target
case should always be set up with uniform fields to avoid such errors. This is most easily done by removing the
definition of the internal field. In the tutorials sometimes files with an .org file extension can be found. This
is a way to preserve the uniform field data in the 0-directory without causing any trouble.

dimensions [01 -1 00 0 0];
internalField nonuniform List<vector>
1600

(

(0.000174291 -0.000171512 0)
(0.000171022 -0.000143648 0)
(-0.000259297 0.000305772 0)
(-0.000380671 0.000374937 0)
(-0.00182755 0.000930701 0)

Listing 126: An inhomogeneous internal field definition in the file 0/U

Mapping fields for time 0.325
interpolating alpha

--> FOAM FATAL IO ERROR:
size 81000 is not equal to the given value of 10125

file: /home/user/OpenFOAM/user-2.1.x/run/twoPhaseEulerFoam/Case/0/alpha from line 18 to line
39.

From function Field<Type>::Field(const word& keyword, const dictionary&, const label)
in file /home/user/OpenF0AM/0OpenFO0AM-2.1.x/src/OpenF0AM/1nInclude/Field.C at line 236.

FOAM exiting

Listing 127: Error message of mapFields; unequal number of values

17.3.3 Pitfall: Mapping data from a 2D to a 3D mesh

In this section we deal with some difficulties of the mapFields utility. We have finished a simulation on a 2D
mesh. The geometry of the 2D case is 20 cm X 2cm x 45 cm.

Now we want to transfer the 2D data to a 3D mesh to initialise the 3D simulation. The geometry of the 3D
simulation is 20cm x 5cm x 45 cm. Note the different dimension in y-direction.

Listing 128 shows the mapFieldsDict that was used. Because of the great similarity of the geometry, no
entries are necessary.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

87

[k mmmm e m e m e k= CHt —kommmmmmm e m e m e *\
| ==mmmmma= | |
I \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
\\ / 0 peration	Version: 2.1.x
\\ / A nd	Web: www.OpenFOAM. org
\\/ M anipulation	
K m m m m o - */
FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object mapFieldsDict;

}

// % % % % % k * * % % % % *x % *k %k % % % % % * * * * * % % % X X *x % % *x *x *x [/
patchMap (G
cuttingPatches ();

// >k >k >k 3k 3k 3k 3k 3k 3k 3k 5k 5k 5k 5k %k %k %k %k %k %k %k %k >k >k >k % % % % 3% 3% 3% > > % % %k %k %k > >k >k %k %k %k % % 3% 3% 3% % > % % % %k %k %k %k %k % %k %k %k % % % % % % % % % //

Listing 128: The file mapFieldsDict

The problem

Figure 31 shows the result of the mapFields run. Only the field values inside the 2D domain were altered. The
part of the 3D domain that lies outside the 2D domain remains unchanged. This behaviour is not satisfactory.

The work-around

One way to solve this problem would be to choose the 2D domain of a similar size as the 3D domain. However,
if the 2D is already finished, then it would take some time to re-simulate the case with a redefined geometry.
Another solution is:

1. define the 3D domain to be of the same size as the 2D domain
2. map the fields

3. redefine the 3D domain to its intended size, without changing the total number of cells

17.3.4 The work-around: Mapping data from a 2D to a 3D mesh

The work-around to the problem of the previous section is rather unelegant. A 2D mesh that has the same
depth as the 3D mesh but is discretised with only 1 cell in depth will have a very bad aspect ratio.

A more elegant solution is to transform the mesh after the 2D simulation has finished. In our example, the
2D mesh has the dimensions 20cm x 2cm x 45 cm and the 3D mesh is 20cm x 5cm x 45 cm big.

With the tool transformPoints the mesh can be scaled selectively in the three dimensions of space. Listing
129 shows how transformPoints can be used to scale the 2D mesh in y-direction by the factor of 2.5. After this
scaling operation the 2D mesh has the desired dimensions of 20 cm x 5cm x 45 cm.

transformPoints -scale ’(1.0 2.5 1.0)°

Listing 129: Scaling the 2D mesh in y-direction with transformPoints

After the mesh transformation the utility mapFields can be used to map the field from the scaled 2D mesh
to the 3D mesh.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

88

o

Figure 31: The mapped field

17.3.5 The importance of mapping

The purpose of this example is to highlight the need for the mapFields utility. A simulation of the bubble
column has been made. Now, the user decides to change the size of the inlet patch. Thanks to the parametric
mesh, this can be done easily only by changing some numbers in the file blockMeshDict.m4. See Section 12.5
for a discussion on creating a parametric mesh.

After the user changed the coordinates of some points, meshing yields a new mesh with the same number of
cells as the old mesh had. Because the number of cells did not change, the data files from the finished simulation
fit the new one. The user simply copies the necessary files from the latest time step of the finished simulation
to the initial time step of the new simulation.

Starting the simulation resulted in a floating point exception. However, after reducing the time step, the
simulation proceeded without any further errors. Figure 32 shows the initial alpha and U1 fields of the new
simulation. Due to a change in the numbering of the cells, the formerly smooth fields are now completely
distorted. The single blocks of the mesh can be distinguished from the figures. This indicates, that OpenFOAM
numbers the cells block-wise.

17.3.6 Pitfall: binary files

If the source case has binary data files, then the boundary conditions need to be defined before mapping the
fields. Therefore, the boundary conditions need to be defined in a suitable ascii file. Then, the fields can be
mapped. Editing a binary file with a text editor may render this file defective.

18 Case manipulation

This section contains a discussion on tools for the manipulation of the simulation case which to not create or
modify the mesh or are used for initialisation. Utilities for the before mentioned tasks are already disussed in
previous sections.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

89

0.1

0.397588

(=]

0.000868

Figure 32: The unmapped fields

18.1 changeDictionary

The utility changeDictionary can be used to modify a dictionary, except those residing in system. We can of
course manipulate any of our dictionaries using a simple text editor, even from the command line (emacs, vim,
nano, etc.).

A possible scenario in which changeDictionary comes in handy is when we do spin-up simulations, i.e. run
the simulation for a certain time with e.g. reduced inflow and continue afterwards with full inflow*3. This
approach might improve the stability of the simulation.

Another case in which changeDictionary proofes to be quite important is when we want to change boundary
value of fields we have gained from a previous simulation. Editing ascii files which measure in the megabytes
can be very tiresome with some text editors. If the files are stored in binary, using a text editor might not be
an option anymore. In this changeDictionary provides a neat way to change boundary values.

Listing 130 shows a simple example of the changeDictionaryDict.

dictionaryReplacement

{
U
{
boundaryField
{
inlet
{
type fixedValue;
value uniform (20 0 0);
}
}
}
}

Listing 130: A simple changeDictionaryDict used to change an inlet velocity
By default changeDictionary operates only on dictionaries living in the time step directories. By adding the
command line option -constant the dictionaries of the constant folder can be edited.
18.1.1 A spin-up simulation

In this section we discuss what is termed a spin-up simulation in this manual. This simulation is intended to
run without user intervention once the simulation is started. In this case we assume we have set up a simulation

43In such a scenario we also would need to manipulate controlDict to increase the endTime. Well, we can’t have everything.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

1 Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

90

© 0 N oA W N e

P T T
I R R S N N TR S

with a reduced inflow. Thus, the flow establishes within the domain in a much gentler regime. After the flow
is established we increase the inflow to the desired value. Again, the build-up of the flow within the domain
happens in a gentler manner, as there is already a slower flow present through out the domain. Thus, we avoid
punching the quiescent fluid in the domain with full force at the inlet**.

Listing 131 shows the Allrun script for such a kind of simulation. In Line 11 the solver is run for the first
time. Since none of the lines in the script is terminated by the ampersand (&), execution waits for the command
of the current line to finish until the next command is invoked. Thus, we save to assume all commands are run
in the stated order.

In Line 14 the log-file generated by runApplication is renamed (moving a file within a directory is essentially
renaming). The reason for this operation is, that runApplication checks if there is already a log present. If
there is, runApplication does not run the specified application.

In Line 15 changeDictionary is called. This is the step in which, in our example, we increase the inlet
velocity. In Line 16 we use the GNU tool sed to edit controlDict?®.

In Line 19 we call the solver for the second time. Here it is crucial that the keyword startAt is set to
latestTime in controlDict.

In Line 20 we apply the same renaming to the solver-log of the second run. This is not necessary in priciple,
however, if we are to perform to automated processing of the logs, then a consistent naming scheme might be
very helpful.

#!/bin/sh
cd ${0%/*} || exit 1 # run from this directory

Source tutorial run functions
$WM_PROJECT_DIR/bin/tools/RunFunctions

Create the mesh using blockMesh
runApplication blockMesh

Run the solver
runApplication pimpleFoam

prepare second run

mv log.pimpleFoam log.pimpleFoamRunO1

runApplication changeDictionary

sed -i ’s/endTime 20/endTime 40/g’ system/controlDict

Run the solver again
runApplication pimpleFoam

mv log.pimpleFoam log.pimpleFoam02

- e end-of-file

Listing 131: The Allrun script of a spin-up simulation

The Allrun script was applied to a slightly modified pitzDaily tutorial case. A appropriate changeDictionaryDict
file Listing 130 was added to the system directory, otherwise the tutorial is untouched. Figure 33 shows the
flow field after changeDictionary was called. The increased inlet velocity is displayed as well as the established
flow from the initial run with an inlet velocity of (10 0 0).

44Such a simple kind of thing could also be achieved with time-dependent boundary conditions. However, there are solvers which
do not support time-variant boundary conditions, or we want to do something nastier, which can’t be achieved with time-variant
bounary conditions.

45We could also do the edit manually with any text editor, as controlDict will never reach megabytes or be stored in binary
format. However, the whole idea of the spin-up simulation idea is to avoid manual intervention.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

I Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

91

U Magnitude

20

Figure 33: The established flow field and the increased inlet boundary condition of the pitzDaily tutorial case
att=1s

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

1 Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

92

Part IV
Modelling

19 Turbulence-Models

19.1 Organisation

The way the source for the turbulence models is organized changed over the time*® the author is dealing with
OpenFOAM. With the release of OpenFOAM-2.3.0*" a new, (even) more general, way of code organisation was
rolled out.

The old way relied essentially on namespaces and inheritance to achieve generality and abstraction. The new
way to do stuff is based on templates, inheritance and inheritance from templates. This section discusses both
ways of code organisation. Especially the new way — with all its template madness — may lead to difficulties to
understand the code at first glances. Thus, the author hopes to be able to shed some light into the mysteries
of the new way to do things.

With the release of OpenFOAM-3.0, the transition to the new turbulence modelling framework has been
completed*®. There is no $FOAM_SRC/turbulenceModels directory anymore in the sources. Thus, the discussion
of the old ways is on its way to be of purely historical interest. However, the author hopes, that even the outdated
sections of this ever-growing collection of stuff may provide some insights.

19.1.1 The old ways

Although, this section is not intended as a rant against everything new, the organisation was easier to under-
stand. You can inspect it at $FOAM_SRC/turbulenceModels. The old turbulence modelling framework is based
on namespaces to draw the distinction between compressible and incompressible models.

The multiphase solvers within this old framework either use a turbulence model on mixture quantities
(multiphaseEulerFoam or interFoam), or the turbulence model was applied to the continuous phase only
(twoPhaseEulerFoam). Within the old framework, only one turbulence model was applied in multiphase simu-
lations

Figure 34 shows the organisation of the old turbulence modelling framework. The class hierarchy is dupli-
cated to some degree with largely identical or equivalent classes in each namespace, i.e. Foam: : compressible
and Foam::incompressible. A comparison of the files RASModel.H and RASModel.C in the namespaces
Foam: : compressible and Foam: : incompressible reveals that these files share more common lines than they
have differing lines.

This issue is also addressed in the release notes of the new turbulence framework in even more pressing
terms:

The issue of compressibility has been managed for many years using two distinct turbulence mod-
elling frameworks, one for constant density flows and another for variable density flows. However,
neither framework is appropriate for multiphase systems, in conservative form, for which the phase-
fraction must be included into all transport and source terms of the turbulence property equations.
Code is largely duplicated between the two frameworks, which is inconsistent with the OpenFOAM
code development policy to minimise code duplication to promote code maintainablity and sustain-
ability. Extension of the current code architecture to multiphase flows would increase the number of
hierarchies from two to four, one for each combination of phase-fraction and density representation.

46Since beginning of 2012 or OpenFOAM-2.0.x.
4Thttp://www.openfoam.org/version2.3.0/multiphase.php
48http://openfoam.org/version3.0.0/

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

93

http://www.openfoam.org/version2.3.0/multiphase.php
http://openfoam.org/version3.0.0/

reglOobject
Foam::incompressible ZF Foam::compressible
turbulenceModel turbulenceModel
RASModel LESModel RASModel LESModel

Figure 34: The class hierarchy of the basis of the old turbulence model framework. The namespaces
Foam: :incompressible and Foam: : compressible are indicated by the colours red and blue.

19.1.2 The new order

The new framework for all turbulence models is located at $FOAM_SRC/TurbulenceModels, notice the capital
T4°. The use of templates is necessary, since this framework is meant to be used by all solvers of OpenFOAM
at some point of time. All solvers means compressible and incompressible, as well as single- and multiphase.
This makes sense, since the concept of turbulence is general, and not related to the specific sitation in question.
The advantages of this approach is best said by the release note itself:

This new framework is very powerful and supports all of the turbulence modelling requirements
needed so far. It will be enhanced and extended in future OpenFOAM releases to include a wide
range of models and sub-models, with the expectation to replace the current dual hierarchies of
turbulence models, to aid code maintainability and sustainability.

Initially the new turbulence modelling framework was introduced with an update of the multiphase solvers.
In the OpenFOAM-2.3.0 release only twoPhaseFEulerFoam and DPMFoam. As time progresses more and more
solvers are updated to use the new framework instead of the old. By the time of writing this paragraph (October
2015) dozens of solvers in the OpenFOAM-dev repository were already ported.

One to rule them all

Whenever, a certain concept manifests itself in a variety of incarnations®, the developers of OpenFOAM take
this rough quote from Lord of the Rings by heart. A single turbulence model class was created to be applied
to whatever physics OpenFOAM implements. For this to work, this most basic turbulence model contains only
the things which can be abstracted enough to apply everything. The most trivial example of this (a feature
independent of compressibiltiy or the number of phases involved), is the sheer existence of a turbulence model®!.

Figure 35 shows the basic class hierarchy of the new turbulence framework. Besides this basic, non-templated
class hierarchy, there is the templated hierarchy of the implementing classes. The basic classes represent the
very abstraction. On top of the familiy tree is the class I0dictionary, which provides the IO facilities. From
using OpenFOAM, we know, that there is a dictionary controlling the turbulence modelling. By deriving the
turbulence model class from I0dictionary, the turbulence model is its dictionary.

From IOdictionary the class turbulenceModel is derived. Note the lower case letter at the beginning.
This is not the only base class for turbulence models, we will also encounter a capital letter class. As already
mentioned, OpenFOAM makes heavy use of the file system’s case sensitivity. Thus, we need to pay attention
to the letter (turbulenceModel # TurbulenceModel).

The class turbulenceModel declares a large number of pure virtual functions which the derived classes down
the family tree inevitably need to implement. This class is the source-code-wise incarnation of the fact that
there is a turbulence model. No further information is as of this point known to the turbulence model, except

49This is one of the reasons why OpenFOAM is not readily available on Windows, since it assumes that the file system is
case-sensitive. In fact, OpenFOAM makes heavy use of case-sensitivity of the file system. Microsoft, however, reminds us not to
expect, e.g. NTFS, to be case-sensitive. See: https://msdn.microsoft.com/en-us/library/aa365247%28VS.85%29.aspx#naming_
conventions

50Such as turbulence is present in single-phase, multi-phase, compressile, and incompressible flow.

51This is not a non-statement, however trivial this might sound. We can relate the existence of turbulence modelling to a certain
class, namely turbulenceModel, which is derived from IOdictionary, and serves as the absolute basis for everything further down
the family tree.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

94

https://msdn.microsoft.com/en-us/library/aa365247%28VS.85%29.aspx#naming_conventions
https://msdn.microsoft.com/en-us/library/aa365247%28VS.85%29.aspx#naming_conventions

that it is a turbulence model. The data of this class is consequently sparse. The most important data members
of this class are references to the run-time object and the mesh. More information can be found in the file
$FOAM_SRC/TurbulenceModels/turbulenceModels/turbulenceModel .H.

From the class turbulenceModel two classes are derived: incompressibleTurbulenceModel and compressibleTurbulen

These two classes represent the fact, that flow can be considered incompressible or compressible. The conse-
quence of this difference can be seen in the treatment of the density by these two classes. In Figure 35 we see,
that the incompressible turbulence model has a geometricOneField as density data member, in contrast to
the compressible model, which has a reference to the actual density field.

IOdictionary

I

turbulenceModel

Time& runTime__
fvMesh& mesh__

Time& time()
fvMesh& mesh()

?

incompressible TurbulenceModel compressible TurbulenceModel

geometricOneField rho__ volScalarField& rho

Figure 35: The class hierarchy of the basis of the new turbulence model framework.

Many to rule the many

The distinction between incompressible and compressible, as well as, single-phase and multi-phase, turbulence
modelling is made by passing appropriate template parameters to the base class TurbulenceModel. Note that
TurbulenceModel is derived from the template parameter BasicTurbulenceModel. In Figure 36 we see the
(templated) class hierarchy of the new turbulence modelling framework. This class hierarchy is related to the
classes depicted in Figure 35 by the use of the template parameter BasicTurbulenceModel, which is either
incompressibleTurbulenceModel or compressibleTurbulenceModel, note the lower case first letter.

The distinction between incompressible and compressible modelling is made by the template parameters
Rho and BasicTurbulenceModel. In the case of incompressible models a geometricOneField®? is passed for
the parameter Rho. The distinction between single-phase and multi-phase modelling is made by the template
parameter Alpha. In the case of single-phase modelling a geometricOneField is passed.

The approach, that TurbulenceModel is derived from its template parameter BasicTurbulenceModel, which
is either an incompressibleTurbulenceModel or compressibleTurbulenceModel, which in turn are derived
from a common base class, demonstrates the great flexibility a high-level programming language, such as C++.
However, the presence of templates and their heavy, sophisticated use — as demonstrated in OpenFOAM — raises
the bar when it comes to reading the source code and finding out what is happening.

52The header file of the class geometricOneField describes its intention as follows:

A class representing the concept of a GeometricField of 1 used to avoid unnecessary manipulations for objects which are known
to be one at compile-time.

Used for example as the density argument to a function written for compressible to be used for incompressible flow.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 95

I\Y

BasicTurbulenceModel

Alpha
Rho
BasicTurbulenceModel

TransportModel

TurbulenceModel

Alpha& alpha__,
TransportModel& transportModel

Alpha& alpha()

geometricOneField geometricOneField
geometricOneField Rho
incompressibleTurbulenceModel compressibleTurbulenceModel
TransportModel TransportModel
IncompressibleTurbulenceModel CompressibleTurbulenceModel
Alpha
geometricOneField
incompressibleTurbulenceModel
TransportModel
PhaselncompressibleTurbulenceModel Aloh
pha
Rho
compressibleTurbulenceModel
TransportModel

PhaseCompressibleTurbulenceModel ‘

Figure 36: The base class TurbulenceModel has four template parameters and it is derived from one of its
template parameters. Note, that the four derived classes — the four incarnations of the turbulence model — differ
in the template parameters.

Branching the family tree

In turbulence modelling, we can identify three elementary choices: we can treat a fluid flow as laminar, or
apply a RAS or LES turbulence model. This basic choice is reflected in the three classes derived from the
template parameter in Figure 37. Since RAS and LES turbulence models are turbulence models®®, those
two base classes are derived from the common template parameter BasicTurbulenceModel. The nature of
BasicTurbulenceModel has been discussed above.

By treating the laminar case as a turbulence model, the OpenFOAM developers got rid of the special case
laminar flow. In Figure 37, the behaviour of the laminar turbulence model is indicated by the methods R()
and nut (). The laminar turbulence returns zero (with the appropriate dimension) for all turbulent quantities.
Thus, the method R(), which computes the Reynolds stress tensor, returns a volumetric®® field of symmetric
tensors will all-zero components®. This behaviour is indicated in Figure 37 with the (= 0) appended to the
method’s names.

The class eddyViscosity is a class which implements the ideas behind the Boussinesq hypothesis, which is
discussed below.

53 Again, we encounter an is a relationship, which is a strong hint for relating two classes by inheritance.

541.e. all values are defined at the cell centers.

55In the file laminar.C, we find this expression in the constructor of the returned tensor field: dimensionedSymmTensor ("R",
sqr (this->U_.dimensions()), symmTensor::zero).

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

96

BasicTurbulenceModel = BTM

PaN
RASModel BIM LESModel BTM
Switch printCoeffs__ Switch printCoeffs__
Switch turbulence__ Switch turbulence__
volScalarField nuEff() volScalarField nuEff()
eddy ViscosityModel BTM laminar BTM

volScalarField nut__

volSymmTensorField R() zgigzgggieerllzoiiﬁl)dj’»é) =0

Figure 37: The class hierarchy of the elementary turbulence models of the new turbulence model framework.
Note the shorthand notation BTM for the class BasicTurbulenceModel.

Further down the family tree

A great number of turbulence models are based on the so-called Boussinesq hypothesis which computes the

Reynolds stresses from an eddy viscosity ps and the mean strain-rate tensor, and was proposed by Boussinesq
[10] [50].

2
R = (Va+val) - SPLk (32)

1 — 1
k= 3 Zugu; = §u’ “u/ (33)

The quantity k is the specific kinetic energy of the turbulent fluctuations. A great part of literature refers
to k as turbulent kinetic energy [41, 25, 6, 7], most probably for reasons of keeping the vocabulary short. The
unit tensor I is often denoted with the Kronecker delta §;; in literature.

The Boussinesq hypothesis is common to both RAS and LES turbulence models. This can be translated into
a class relationship. In Figure 38 we see how the kEpsilon and the Smagorinsky turbulence models are derived.
Those two models are discussed since these are widely used. The class eddyViscosityModel implements the
general idea of the Boussinesq hypothesis, thus, it is the common base for both turbulence models. In the case
of LES models, an intermediate class (LesEddyViscosityModel) is in between the class eddyViscosityModel
and the actual turbulence model. This class serves to hold data and define methods specific to LES models
using the Boussinesq hypothesis.

The distinction between RAS models and LES models is made by the template parameter inserted in
eddyViscosityModel. In the case of RAS models, the template parameter of eddyViscosityModel from which
e.g. the kEpsilon model is derived is RASModel<BasicTurbulenceModel>. Since RASModel is derived from
BasicTurbulenceModel, the class RASModel is a BasicTurbulenceModel. Thus, this operation is perfectly
valid. In the case of LES models, LESModel<BasicTurbulenceModel> is inserted as the template parameter of
eddyViscosityModel.

Sounds complicated, which it probably also is. Nevertheless, we admire the versatility of generality of the
new turbulence modelling framework and stomach the mental pain caused by all the template and inheritance
wizardry.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

97

BasicTurbulenceModel = BTM

I

eddyViscosityModel BTM = EVM
volScalarField k()
kEpsilon BTM lesEddy ViscosityModel BTM
volScalarField k dimensionedScalar Ce

volScalarField epsilon__

volScalarField epsilon()
volScalarField k()
volScalarField epsilon() T

Smagorinsky

BTM

dimensionedScalar Ck__
volScalarField k()

Figure 38: The class hierarchy of a selection of turbulence models of the new turbulence model framework.
Note the shorthand notation BTM for the class BasicTurbulenceModel, and EVM for eddyViscosityModel.

The method signature in italics of the class eddyViscosityModel indicates a pure virtual function. This
method has to be implemented by the classes derived from eddyViscosityModel. In the case of the kEpsilon
class it is the class derived directly from eddyViscosityModel which implements k(). In the case of the
Smagorinsky class, the pure virtual function was inherited via lesEddyViscosityModel. A class containing a
pure virtual function can not be instantiated, thus, there can be no usable turbulence model 1esEddyViscosityModel.
This class can only serve as an intermediary.

Disclaimer

Everthing of Section 19 after this point has been created a while ago. The some of the content of the sub-sections
below might be outdated by the time you read this.

19.2 Categories

The desired category of turbulence models can be specified in the file turbulenceProperties. There are three
possible entries.

laminar The flow is modelled laminar
RASModel A Reynolds averaged turbulence model (RAS-model) is used.
LESModel Turbulence is modelled by a large-eddy model.

The file turbulenceProperties contains only one entry. In case of a large eddy simulation, this entry reads:

simulationType LESModel;

Listing 132: turbulenceProperties

19.3 RAS-Models

The entry in the file turbulenceProperties specifies only the class of turbulence models. The exact turbulence
model is specified in the file RASProperties. This file must contain all necessary parameters.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

98

Listing 133 shows the content of RASProperties. In this case a k-e¢ model is used and no further parameters
are necessary.

RASModel kEpsilon;
turbulence on;
printCoeffs on;

Listing 133: RASProperties
Depending on the exact model more parameters can be necessary.

19.3.1 Keywords

RASModel The name of the turbulence model. At this place laminar can also be chosen. The banana test
(see Section 8.2.1) delivers a list of available models.

--> FOAM FATAL ERROR:
Unknown RASModel type banana

Valid RASModel types:

17

(
LRR
LamBremhorstKE
LaunderGibsonRSTM
LaunderSharmaKE
LienCubicKE
LienCubicKELowRe
LienLeschzinerLowRe
NonlinearKEShih
RNGkEpsilon
SpalartAllmaras
kEpsilon
kOmega
kOmegaSST
kkLOmega
laminar
qZeta
realizableKE

Listing 134: Possible RAS-model entries in RASProperties

turbulence This is a switch to activate or deactivate the turbulence modelling. Allowed values are: on/off,
true/false or yes/no.
If this switch is deactivated, then a laminar simulation is conducted. This way of choosing a laminar
model is not recommended, see Section 19.5.1.

printCoeffs If this switch is enabled, then the solver will display the coefficients of the selected turbulence
model.
Even if the switch turbulence is disabled, the solver will display the coefficients at the beginning of the
simulation, see Listing 141. The coeflicients are not displayed only when RASModel laminar is chosen.

optional parameters Some models accept optional parameters to override the default values of the model.
Listing 135 shows how the coefficients of the k-¢ model can be overridden.

kEpsilonCoeffs
{
Cmu 0.09;
Cc1 1.44;
c2 1.92;
Cc3 -0.33;
sigmak 1.0;
sigmaEps 1.11; //0Original value:1.44

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

99

Listing 135: Definition of model parameters in RASProperties

19.3.2 Pitfall: meaningless Parameters

In the above section it was shown how to override default values of the model constants. In this procedure,
there is one source of error hidden. This is not an actual error, but it can lead to a fruitless search for an error.

If nonsensical parameters are added to the kEpsilonCoeffs dictionary, these will be read and also printed.
Listing 136 shows the kEpsilonCoeffs dictionary of the file RASProperties. This dictionary is used to override
default values of the model constants. A fake model constant has been added to this dictionary.

Listing 137 shows parts of the solver output, when this dictionary is used in a simulation. All constants of
the dictionary are read and printed again. It seems as if the constant banana is part of the turbulence model.
Varying this parameter yields no results, which is no error.

The reason for this behaviour is, there is no check whether the defined constants in the dictionary make
sense or not.

kEpsilonCoeffs
{
Cmu 0.09;
Cc1 1.44;
c2 1.92;
c3 -0.33;
sigmak 1.0;
sigmaEps 1.11; //Original value:1.44
banana 0.815; // nonsense parameter
}

Listing 136: Definition of model parameters in RASProperties

Selecting RAS turbulence model kEpsilon

kEpsilonCoeffs

{
Cmu 0.09;
Cc1 1.44;
c2 1.92;
c3 -0.33;
sigmak 1.0;
sigmaEps 1.11;
banana 0.815;

}

Starting time loop

Listing 137: Solver output

19.4 LES-Models
19.4.1 Keywords

The keywords turbulence and printCoeffs have the same meaning with LES models. There is also the
possibility — depending on the selected model — of defining optional parameters.

LESModel The name of the turbulence model. At this place laminar can also be chosen. The banana test
(see Section 8.2.1) delivers a list of available models. Listing 138 shows the result of such a banana test.
The model dynamicSmagorinsky was loaded from an external library. See Section 8.3.3 for how to include
external libraries.

--> FOAM FATAL ERROR: Unknown LESModel type banana
Valid LESModel types:

16

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

100

DeardorffDiffStress
LRRDiffStress
Smagorinsky
SpalartAllmaras
SpalartAllmarasDDES
SpalartAllmarasIDDES
dynLagrangian
dynOneEqEddy
dynamicSmagorinsky
homogeneousDynOneEqEddy
homogeneousDynSmagorinsky
kOmegaSSTSAS

laminar
mixedSmagorinsky
oneEqEddy

spectEddyVisc

Listing 138: Possible LES-model entries in LESProperties

19.4.2 Algebraic sub-grid models

Algebraic sub-grid models introduce no further transport equation to the simulation. The turbulent viscosity
is calculated from existing quantities.

19.4.3 Dynamic sub-grid models

The dynamic sub-grid models calculate the model constant Cg from known quantities instead of prescribing a
fixed value. The way how Cyg is calculated is determined by the sub-grid model.

19.4.4 One equation models

A further class of LES turbulence models are one equation models. These models add one further equation to
the problem. Usually, an additional equation for the sub-grid scale turbulent kinetic energy is solved.

19.5 Pitfalls
19.5.1 Laminar Simulation

As already mentioned — see Section 19.3 — turbulence modelling can be deactivated in a some ways.
In the following, different ways to conduct a laminar simulation are listed. This list applys only to solvers
that utilize the generic turbulence modelling of OpenFOAM:

1. turbulenceProperties: simulationType laminar
This is the most general way to turn turbulence modelling off. turbulenceProperties controls the generic
turbulence class. The generic turbulence class can take the form of the laminar, RASModel or LESModel
class, see Figure 65. This is controlled by the parameter simulationType.

Selecting turbulence model type laminar

Listing 139: Solver output for simulationType laminar

2. RASProperties: RASModel laminar
LESProperties: LESModel laminar
In this case, a certain turbulence modelling strategy is chosen (RASModel or LESModel). However, there
is a dummy turbulence model for laminar simulation. This dummy turbulence model is derived from the
base class RASModel but it implements a laminar model. See Figure 66. Therefore, RASModel laminar
selects the laminar RAS turbulence model. In this point RASModel and LESModel behave similar.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Selecting turbulence model type RASModel
Selecting RAS turbulence model laminar

Listing 140: Solver output for RASModel laminar

3. RASProperties: turbulence off
The switch turbulence can be used to enable or disable turbulence modelling. When the calculation is
started, the turbulence model specified is used. However, in the source code of the solver, there is the test
whether turbulence modelling is active or not. See Listing 170.

Selecting turbulence model type RASModel
Selecting RAS turbulence model kEpsilon

kEpsilonCoeffs

{
Cmu 0.09;
C1 1.44;
c2 1.92;
sigmaEps 1.3;

3

Listing 141: Solver output for turbulence off

Solver output

The last two prossibilities to conduct a laminar simulation can lead to confusion because the solver output
contains word like RASmodel or RAS turbulence model. See Listings 140 and 141. In both cases the simulation
is laminar. In order to avoid this source of confusion, the user should use the parameter simulationType to
perform a laminar calculation.

Independent from all other settings, printCoeffs prints the model constants of the selected turbulence
model. This may also lead to confusion, when e.g. turbulence off is chosen to conduct a laminar simulation.

Exceptions

The above explanation only applies to solvers that utilize the generic turbulence models of OpenFOAM. However,
there is no rule without its exceptions.

simpleFoam This solver uses only RAS turbulence models. Therefore, the entries of the file turbulenceProperties
are redundant and the only ways to control turbulence modelling are items 2 and 3 of the list above.

twoPhaseFulerFoam This solver has the k-¢ turbulence model hardcoded. Only item 3 of the list above
applies to this solver. See Section 19.5.2 for a detailled discussion.

bubbleFoam The same as twoPhaseEulerFoam.

multiphaseEulerFoam This solver only uses LES turbulence models. Items 2 and 3 of the list above apply.

19.5.2 Turbulence models in twoPhaseFEulerFoam

In the solver twoPhaseFulerFoam, the use of the k-e¢ turbulence model is hardcoded. This means that the solver
does not use the generic turbulence modelling ususally used by OpenFOAMs solvers. The only choice the user
of twoPhaseFulerFoam has is whether to enable or disable the k-e turbulence model.

For this reason, the file constant/turbulenceProperties is not needed any more. This file can savely be
deleted.

Another consequence of the k-e¢ turbulence model being hardcoded into twoPhaseFulerFoam is that the
keyword turbulenceProperties in the file RASproperties is also not needed any more. This entry is only
read if the generic turbulence modelling is used and if there is any choice of which RAS-model to use. The
only mandatory keyword in RASproperties is the switch turbulence. This switch is the only way to decide
whether to use turbulence modelling or not with twoPhaseFulerFoam. Solvers which use the generic turbulence
modelling offer three possible ways to disable turbulence modelling, see Section 19.5.1.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 102

I\Y

19.5.3 Laminar simulation with twoPhaseFEulerFoam

If twoPhaseFulerFoam is used and a laminar simulation is conducted, then the presence of the files like 0/k or
0/epsilon is mandatory. The solver read this files regardless of the fact, that a laminar simulation is conducted.
This is due to the fact that the use of the k-e¢ model is hardcoded into twoPhaseEulerFoam.

Other solvers read this files based on the condition if and which turbulence model is used. Otherwise there
would be the need for all possible files (0/k, 0/epsilon, 0/omega, etc.) to be present in any case, which would
be utter madness.

19.5.4 Initial and boundary conditions
All turbulence models can be divided into classes depending on their mathematical properties.

Algebraic models These models add an algebraic equation to the problem. The turbulent viscosity is com-
puted from known quantities using an algebraic equation (e.g. the Baldwin-Lomax model)

One equation models These models introduce an additional transport equation to the problem. The eddy
viscosity is computed from this additional quantity (e.g. the Spalart-Allmaras model)

Two equation models These models introduce two additional transport equations to the problem. The eddy
viscosity is computed from these additional quantities (z.B. k-¢, k-w)

Every field quantity of a turbulence model needs its initial and boundary conditions. Consequently, there may
be the need for additional files in the 0-directory. One way to find out which files are needed is to look at the
tutorials. There, a case may be found which utilises the needed turbulence model.

If a simulation is started and the solver is missing files — i.e. the solver tries to read files which are not
present — then OpenFOAM will issue a corresponding error message. Listing 142 shows an error message of a
case with a missing 0/k file.

Selecting turbulence model type RASModel

Selecting RAS turbulence model kEpsilon

--> FOAM FATAL IO ERROR: <cannot find file

file: /home/user/OpenFO0AM/user-2.1.x/run/pisoFoam/cavity/0/k at line O.

From function reglOobject::readStream()
in file db/regIOobject/regllobjectRead.C at line 73.

FOAM exiting

Listing 142: Solver error message: missing file

19.5.5 Additional files

RAS turbulence models produce additional files. Most RAS models calculate the turbulent viscositiy from
certain quantities. These quantities are usually field quantities and depend on the used turbulence model.
However, the aim of all RAS turbulence models is to calculate the turbulent viscosity. The turbulent viscosity
itself is a field quantity.

Listing 143 shows the folder contents before and after a simulation with pisoFoam. The 0-directory contains
only the mandatory files, in this case pressure and velocity as well as the turbulent quantities k and e.

After the simulation has finished, the 0-directory contains more files. The reason for creating the *.01d files
is not known. However, the turbulence model created the file nut for storing the turbulent viscosity.

The file phi as well as the folder uniform is created by the solver.

user@host :~/0penFOAM/user-2.1.x/run/pisoFoam/ras/cavity$ 1s

0 constant system

user@host :~/0OpenF0AM/user-2.1.x/run/pisoFoam/ras/cavity$ 1s 0/

epsilon k p U

user@host :~/0OpenFO0AM/user-2.1.x/run/pisoFoam/ras/cavity$ pisoFoam > /dev/null
user@host :~/0OpenF0AM/user-2.1.x/run/pisoFoam/ras/cavity$ 1s

0 0.5 1 <constant system

user@host :~/0OpenFOAM/user-2.1.x/run/pisoFoam/ras/cavity$ 1s 0/

epsilon epsilon.old k k.old nut p U

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

103

user@host :~/0OpenFOAM/user-2.1.x/run/pisoFoam/ras/cavity$ 1ls 0.5/
epsilon k mnut p phi U wuniform
user@host :~/0OpenFOAM/user-2.1.x/run/pisoFoam/ras/cavity$

Listing 143: Folder contents at the begin and the end of a simulation

The 0-directories of some tutorial cases may already contain such additional files, e.g. nut. In some cases
the O-directory may also contain several of such files due to a change in the naming scheme. Listing 144 shows
the contents of the 0-directory of the pitzDaily tutorial case of simpleFoam. The case has not been run, so the
files nut and nuTilda have not been generated by the solver. None of these two files is necessary to run the
case with the k-e turbulence model.

epsilon k nut nuTilda p U

Listing 144: The content of the 0-directory of the pitzDaily tutorial case of simpleFoam

19.5.6 Spalart-Allmaras

The Spalart-Allmaras is a one-equation turbulence model. Although it introduces only one additional equation
to the problem it needs two additional files in the O-directory. Listing 145 shows the content of the 0-folder
of the airFoil2D tutorial case of simpleFoam. The files nut and nuTilda are both necessary to run the case.
The former contains the turbulent viscosity and the latter contains the transported quantity of the turbulence
model. Therefore, the rule one additional transport equation entails one additional data file is not violated.
Because the viscosity is not constant it has to be defined in a file in the 0-directory. And, because the
viscosity is not the transported quantity of the Spalart-Allmaras model another file is added to the 0-directory.

nut nuTilda p U

Listing 145: The content of the 0-directory of the airFoil2D tutorial case of simpleFoam

20 Eulerian multiphase modelling

In Eulerian two-phase modelling both phases are considered continua even though one phase might consist of
dispersed phase elements (DPEs) such as bubbles, drops or particles. In these simulations the two phases can
be distinguished into a continuous phase and a dispersed phase. This naming scheme refers to the physical
situation. Within the (Eulerian) mathematical description, however, both phases are continua.

As two momentum equations are solved (one per phase), each phase has its own velocity field. However,
there is only one pressure field. Thus, the pressure is the same for both phases; this also applies to the VOF
method. Due to the fact that two continuity®® and two momentum equations are solved, this approach is often
referred to as two fluid model.

The Eulerian description of multi-phase flow is not limited to two phases, however, for reasons of simplicity,
we limit ourselves to the case of two phases.

!
56The constraint that the sum of all volume fraction fields must yield unity, i.e. Z a; = 1, allows for one continuity equation
to be eliminated. In the case of two phases, only one continuity equation needs to be solved. However, both continuity equation
can be combined.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 104

I\Y

gas

H n L
liquid

(a) Discrete bubbles in a continuous) Continuum approach.
liquid.

Figure 39: Modelling approach on the example of a gas-liquid two-phase system.

As the DPEs are considered to be a continuous phase, their properties are averaged over each cell of the
computational domain. Thus, the properties of the dispersed phase are the mean properties of the dispersed
matter. If all DPEs have equal properties (e.g. diameter, density, etc.), then the dispersed phase is referred to as
being mono-disperse. Only in the case of mono-dispersity, the averaging over the cells introduces no additional
errors. If the DPEs have variable properties (e.g. a diameter range), then the dispersed phase is referred to as
being poly-disperse. The correct handling of poly-dispersity requires additional considerations on the models.

20.1 Phase model class

One of the strenghts of object oriented programming is that the class structure in the source code can reflect
the properties and relations of real-world things.

The phase model class in the various two- and multi-phase solvers of OpenFOAM is one example of how
techniques of object oriented programming can be applied. In terms of a multi-phase problem in fluid dynamics
we distinguish different phases.

We now violate the unwritten law of to not cite Wikipedia[w].

Phase (matter), a physically distinctive form of a substance, such as the solid, liquid, and gaseous
states of ordinary matter—also referred to as a "macroscopic state”
http://en.wikipedia.org/wiki/Phase

In fluid dynamics phase is a commonly used term. When we intend our code to represent the reality we want
to describe as closely as possible we need to introduce the concept of the phase into our source code. From a
programming point of view properties of a phase — such as viscosity, velocity, etc. — are easy to implement. The
viscosity of a phase is simply a field of values, velocity is another field of values.

Object orientation allows us to translate the idea of the phase into programming language. The basic idea
is that a phase has a viscosity, it also has a velocity. We now create a class named phaseModel and this class
needs to have a viscosity, a velocity and everthing else a phase needs to fit our needs.

The phase model classes follow the code of best practice in object oriented programming to hide internal
data from the outer world and to provide access via the classes methods (data encapsulation, see http://www.
tutorialspoint.com/cplusplus/cpp_data_encapsulation.htm).

No phases, please

In the single-phase solvers of OpenFOAM - such as simpleFoam — the concept of a phase is not used. As there
is only one temperature and velocity to deal with, the concept of phases is not needed. In the single-phase
solvers the phase-properties (viscosity, velocity, density, etc.) are linked according to the physical relations that
are taken into account, but the concept of a phase is missing.

20.1.1 A comparison of the phase models in OpenFOAM-2.2

In this section we want to compare the implementation of the phase model class of the two solvers twoPhaseEuler-
Foam and multiphaseFEulerFoam.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

105

http://xkcd.com/285/
http://en.wikipedia.org/wiki/Phase
http://www.tutorialspoint.com/cplusplus/cpp_data_encapsulation.htm
http://www.tutorialspoint.com/cplusplus/cpp_data_encapsulation.htm

© 0 N e U os W N e

=R e e
w N = O

14

twoPhaseFulerFoam

The phase model class in twoPhaseEulerFoam-2.2.x collects the properties of a phase and offers an interface
for accessing these properties. Listing 146 shows the essence of the header file of the phase model class. The
listing is syntactically correct, however all pre-processor instruction (e.g. the #include statements) have been
removed. Furthermore, most of the comments have been removed and the formatting has been adapted to
reduce the line number. The purpose of Listing 146 is to present the data members and methods of the class
by actual source code.

namespace Foam

{

class phaseModel

{

// Private data
dictionary dict_;
word name_;
dimensionedScalar d_;
dimensionedScalar nu_;
dimensionedScalar rho_;
volVectorField U_;
autoPtr<surfaceScalarField> phiPtr_;

public:
// Member Functions

const word& name () const { return name_; }
const dimensionedScalar& d() const { return d_; }
const dimensionedScalar& nu() const { return nu_; }
const dimensionedScalar& rho() const { return rho_; }
const volVectorField& U() const { return U_; 1}
volVectorField& U() { return U_; }

const surfaceScalarField& phi() const { return phiPtr_(); 1}

surfaceScalarField& phi() { return phiPtr_(); }
};

} // End namespace Foam

Listing 146: A boiled-down version of the file phaseModel.H

The phase model class of twoPhaseFulerFoam-2.2.x contains all phase properties needed for an incompressible
two-phase solver that makes use of an important consequence of being limited to two phase problems. By
taking a look on the members of the class we see that there is no volume fraction field. In two phase problems
one volume fraction field (alphal) suffices as the volume fraction field of the other phase is instantly known
(alpha2 = 1 - alphal). Thus, the volume fraction can be treated seperately from other phase information.

Another missing item is the pressure. Most two- or multi-phase Eulerian solvers assume/use a common
pressure for all phases. Thus, the pressure is independent of the phases and can be treated seperately.

multiphase EulerFoam

One difference between the phase model class used in twoPhaseFEulerFoam and the one used in multiphaseEuler-
Foam follows directly from the simplification made in the two-phase case. When dealing with an arbitrary
number of phases, each phase must keep track of its own volume fraction. Thus, the volume fraction must be
included into the phase model.

The straight-forward way would be to add another reference to the data members. As the volume fraction
field is a scalar field, this reference would be a reference to a volScalarField. In multiphaseFEulerFoam a
more subtle approach was chosen. This also presents the application of another object-oriented programming
technique.

The phase model class of multiphaseEulerFoam is derived from the class volScalarField. Thus, the phase
model class is among other things its own the volume fraction field.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

106

© 0 N e G oA W N R

R N -
S © ® N & o~ W N R O

21
22

24

25

Listing 147 shows a stripped version of the header file of multiphaseEulerFoam’s phase model class. Again,
large parts of the file have been removed leaving only the data members and the methods of the class.

namespace Foam

{
class phaseModel

public volScalarField

{
// Private data

word name_;
dictionary phaseDict_;
dimensionedScalar nu_;
dimensionedScalar kappa_;
dimensionedScalar Cp_;
dimensionedScalar rho_;
volVectorField U_;
volVectorField DDtU_;
surfaceScalarField phiAlpha_;
autoPtr<surfaceScalarField> phiPtr_;
autoPtr<diameterModel> dPtr_;

public:

// Member Functions

const word& name() const { return name_; }
const word& keyword() const { return name(); }
tmp<volScalarField> d() const;
const dimensionedScalar& nu() const { return nu_; }
const dimensionedScalar& kappa() const { return kappa_; }
const dimensionedScalar& Cp() const { return Cp_; }
const dimensionedScalar& rho() const { return rho_; }
const volVectorField& U() const { return U_; }
volVectorField& U() { return U_; }
const volVectorField& DDtU() const { return DDtU_; }
volVectorField& DDtU() { return DDtU_; }
const surfaceScalarField& phi() const { return phiPtr_(); 1}
surfaceScalarField& phi() { return phiPtr_(); }
const surfaceScalarField& phiAlpha() const { return phiAlpha_; }
surfaceScalarField& phiAlpha() { return phiAlpha_; }
void correct ();
bool read(const dictionary& phaseDict);

};

} // End namespace Foam

Listing 147: A boiled-down version of the file phaseModel.H

The statements following the class keyword and the class name indicates the derivation of a class. The class
name (phaseModel) and the name of the class we are deriving from (volScalarField) are separated by a colon
(:). The name of the base class (volScalarField) is preceded by a visibility specifier (public). Here, we see a
prototype of a class definition. The class we define (phaseModel) is derived from a base class (volScalarField).

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

class phaseModel : public volScalarField
{

/* some c++ code */

}

This example highlights, that the class phaseModel is derived from the class volScalarField. This infor-
mation alone does no proof that the phase model is its own volume fraction field. However, a glance on the
constructor in the implementation file brings clarity.

In Listing 148 we see, that the first instruction in the initialisation list of the constructor reads the vol-
ume fraction field of the respective phase. This proofes that the phase model is in fact its own volume
fraction field. For an explanation why we come to this conclusion we refer to any C++ textbook or on-
line resource that covers the concept of inheritance, see e.g. http://www.learncpp.com/cpp-tutorial/
114-constructors-and-initialization-of-derived-classes/ or [45].

// % % % % % % * * % % % x x x x x Constructors * * * * % X x x x *x x *x *x *x //
Foam::phaseModel::phaseModel
(

const word& name,

const dictionary& phaseDict,

const fvMesh& mesh

volScalarField
(
I0object
(
"alpha" + name,
mesh.time () .timeName (),
mesh,
I0object::MUST_READ,
I0object:: AUTO_WRITE
),
mesh
),
name_ (name),
// code continues

Listing 148: The first few lines of the constructor of the phase model.

Besides being its own volume fraction field the phase model class of multiphase EulerFoam was extended by
several fields bearing information for the simulation of thermodynamics.

We can also observe the rudiment of giving the phase model a more active role. The phase model class
of twoPhaseEulerFoam is simply an information carrier. The phase model of multiphaseEulerFoam features a
method named correct (). The correct () method is used in many models for actions performed at every time
step. However, in multiphaseEulerFoam-2.2.x this method is empty.

With OpenFOAM-2.1.0 the class diameterModel was introduced into multiphase EulerFoam and compress-
ibleTwoPhaseEulerFoam. The phase model class of multiphaseEulerFoam uses a diameter model class for keep-
ing track of the dispersed phase’s diameter. The diameter model offers the choice of computing the diameter of
the dispersed phase elements from thermodynamic quantities besides using a constant diameter. Thus, the data
member dimensionedScalar d_ isreplaced by a reference to a diameter model (autoPtr<diameterModel> dPtr_).

20.1.2 A comparison of the phase models in OpenFOAM-2.3
In this section we want to compare the implementation of the phase model class of the two solvers twoPhaseFuler-
Foam and multiphaseFulerFoam.

A comment on multiphaseFEulerFoam

The phase model class used for multiphase EulerFoam in OpenFOAM-2.2.x and OpenFOAM-2.3.x differs very
little with respect to the class’s methods and members. Listing 149 shows that the header files of the phaseModel
class of multiphase EulerFoam differs only in the copyright notice. The implementation file shows slightly greater

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

108

http://www.learncpp.com/cpp-tutorial/114-constructors-and-initialization-of-derived-classes/
http://www.learncpp.com/cpp-tutorial/114-constructors-and-initialization-of-derived-classes/

© 0 N e U oA W N R

I I N = T = T S S Sy S Gy S
A O N = O © N e o kW N R O

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

differences®”. However, the behaviour of this class can be considered nearly identical in OpenFOAM-2.2.x and

OpenFOAM-2.3.x.

user@host :~/0OpenF0AM$ diff
OpenFOAM-2.2.x/applications/solvers/multiphase/multiphaseEulerFoam/phaseModel/phaseModel/
phaseModel .H
OpenFOAM-2.3.x/applications/solvers/multiphase/multiphaseEulerFoam/multiphaseSystem/
phaseModel/phaseModel .H

5ch
< \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
> \\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation

Listing 149: The output of diff for the file phaseModel.H of the solver multiphaseFEulerFoam of the versions

OpenFOAM-2.2.x and OpenFOAM-2.3.x as of May 2014°8.

twoPhaseFulerFoam

The two-phase model of twoPhaseFulerFoam-2.3.x makes heavy use of abstractions. The phase model class is

used in conjunction with a class for the two-phase system.

namespace Foam

{

class phaseModel

public volScalarField ,
public transportModel

// Private data
const twoPhaseSystem& fluid_ ;
word name__;
dictionary phaseDict_ ;
scalar alphaMax_ ;
autoPtr<rhoThermo> thermo_ ;
volVectorField U_;
surfaceScalarField alphaPhi_;
surfaceScalarField alphaRhoPhi_ ;
autoPtr<surfaceScalarField > phiPtr_ ;
autoPtr<diameterModel> dPtr_ ;
autoPtr<PhaseCompressibleTurbulenceModel<phaseModel> > turbulence__ ;

public:

// Member Functions
const word& name() const { return name ; }

const twoPhaseSystem& fluid () const { return fluid ; }
const phaseModel& otherPhase () const;

scalar alphaMax () const { return alphaMax_; }
tmp<volScalarField> d() const;

const PhaseCompressibleTurbulenceModel<phaseModel>&
turbulence () const;

PhaseCompressibleTurbulenceModel<phaseModel >&
turbulence () ;

const rhoThermo& thermo() const { return thermo_(); }

rhoThermo& thermo() { return thermo_ (); }

57The diff of the implementation file would be too long to be shown at this place. For general information on diff see Section

49.6.
580penFOAM Builds compared: 2.2.x-61b850bc107b and 2.3.x-0eb39ebe0f07.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

109

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

tmp<volScalarField > nu() const { return thermo_-—>nu(); }

tmp<scalarField > nu(const label patchi) const { return thermo —>nu(patchi); }
tmp<volScalarField> mu() const { return thermo —>mu(); }

tmp<scalarField > mu(const label patchi) const { return thermo_—>mu(patchi); }
tmp<volScalarField > kappa() const { return thermo_—>kappa(); }
tmp<volScalarField> Cp() const { return thermo —>Cp(); }

const volScalarField& rho() const { return thermo_—>rho(); }

const volVectorField& U() const { return U_; }

volVectorField& U() { return U ; }

const surfaceScalarField& phi() const { return phiPtr (); }
surfaceScalarField& phi() { return phiPtr_ (); }

const surfaceScalarField& alphaPhi() const { return alphaPhi ; }
surfaceScalarField& alphaPhi() { return alphaPhi ; }

const surfaceScalarField& alphaRhoPhi() const { return alphaRhoPhi ; }
surfaceScalarField& alphaRhoPhi() { return alphaRhoPhi ; }

void correct ();

virtual bool read(const dictionary& phaseProperties);

virtual bool read() { return true; }

}s

} // End namespace Foam

Listing 150: A boiled-down version of the file phaseModel.H

The data members of the phase model class in twoPhaseFEulerFoam-2.3.x contain a reference to the two-phase
model class. This makes the phase model class aware of the other phase. The data members also contain a
reference to a turbulence model and a thermophysical model. This is up to now the greatest generalisation we
could observe in the multi-phase solvers of OpenFOAM.

20.2 Phase system classes

In a multiphase solver we can not only create an abstraction for the physical phase, e.g. water. We can
also create an abstraction for the multi-phase system, i.e. the entirety of the involved phases. Again, multi-
phaseEulerFoam was the forerunner for this idea. Since the introduction of multiphaseFEulerFoam there is a
class named multiphaseSystem. In twoPhaseEulerFoam-2.3 the class twoPhaseSystem was introduced. The
most obvious purpose of this class is the implementation of the phase continuity equation. In both solvers the
solution of the continuity equation(s) hides behind the function call fluid.solve().

20.2.1 The class twoPhaseSystem

We now take a detailled look on the class twoPhaseSystem. This class was introduced with twoPhaseEulerFoam-
2.3 and this class seems to be a consequent continuation of ideas introduced in the class multiphaseSystem. We
focus on the class twoPhaseSystem, since the class multiphaseSystem has not really evolved from the release of
OpenFOAM-2.1 til the release of OpenFOAM-2.3. The header and the implementation file are largely identical.

Phase models

Two data members of the class are the two involved phase models phasel_ and phase2_. The class provides
methods to access this phase models. There is also a method to access the other phase. As there are only two

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

110

© 0 N o U R W N e

o e
N o= O

© 0 N e G oh W N R

== e
v o= O

phases involved, this operation is possible.

Phase pair models

In order to cover all possible flow situations the momentum exchange models are defined in the case pair-wise
in a separated fashion, i.e. drag for air dispersed in water (bubbly flow) and drag for water dispersed in air
(droplet flow).

The classes phasePair and orderedPhasePair provide an elegant way to deal with this situation. The
phase pair models are used for blending the interfacial momentum exchange models.

Momentum exchange models

The class has member variables for the interfacial momentum exchange models. Listing 151 shows the members
of the class related to momentum exchange models. The templated class BlendedInterfacialModel<> provides
functionality that is needed for all momentum exchange models. As the class name suggests, the blending is
covered by this class. The template parameter of this class stands for any one of the interfacial momentum
exchange models.

//- Drag model

autoPtr<BlendedInterfacialModel <dragModel> > drag_;

//- Virtual mass model

autoPtr<BlendedInterfacialModel <virtualMassModel> > virtualMass_;

//- Heat transfer model

autoPtr<BlendedInterfacialModel <heatTransferModel> > heatTransfer_;

//- Lift model

autoPtr<BlendedInterfacialModel <liftModel> > 1lift_;

//- Wall lubrication model

autoPtr<BlendedInterfacialModel <wallLubricationModel> > wallLubrication_;
//- Wall lubrication model

autoPtr<BlendedInterfacialModel <turbulentDispersionModel> > turbulentDispersion_;

Listing 151: The declaration of the momentum exchange members of the class twoPhaseSystem in
twoPhaseSystem.H

A momentum exchange model alone is nice, but what we really need are the contribution to the momentum
equation. Thus, the class twoPhaseSystem provides methods to access the respective force terms or the respec-
tive coefficients. We have seen this force terms and coefficients in action in Section 26.6.

//- Return the drag coefficient
tmp<volScalarField> dragCoeff () const;

//-
tmp<volScalarField>
//- Return the heat
tmp<volScalarField>
//- Return the 1lift
tmp<volVectorField>
//- Return the wall
tmp<volVectorField>

Return the virtual mass coefficient

virtualMassCoeff () const;
transfer coefficient
heatTransferCoeff ()
force

liftForce () const;
lubrication force
wallLubricationForce ()
lubrication force

const;

const;

//- Return the wall

tmp<volVectorField> turbulentDispersionForce () comnst;

Listing 152: The declaration of the accessing methods for the momentum exchange coefficients of the class
twoPhaseSystem in twoPhaseSystem.H

20.2.2 The class multiphaseSystem

The solver multiphase FulerFoam uses the class multiphaseSystem. This class seems to be the ancestor of the
class twoPhaseSystem.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Phase pair

The class multiphaseSystem declares a nested class interfacePair. A nested class is a class definition within
another class. Thus, the nested class is hidden from the outside world®?.

The phase pair class is used to deal with surface tension, which by definition is a property of a pair of phases,
and drag.

20.3 Turbulence modelling
20.3.1 Modelling strategies

The problem of turbulence modelling in multi-phase problems can be tackled in one of the following fashions. The
methods are sorted by their perceived computational cost. Whereas the first two methods may be equivalent,
the last is definitely more expensive in terms of memory and computational time. However, each of these
methods has its strengths and weaknesses, and its use cases.

Continuous phase only This model solves computes the turbulent properties of the continuous phase and
assumes an algebraic relationship between the turbulent properties of the continuous and the dispersed
phase. The influence of turbulence on the dispersed phase can also be neglected alltogether. In the Fluent
Theory Guide [6] it is noted: [...] is the appropriate model when the concentrations of the secondary
phases are dilute. In this case, interparticle collisions are negligible and the dominant process in the
random motion of the secondary phases is the influence of the primary-phase turbulence. In Fluent this
approach is referred to as dispersed turbulence model.

Mixture In this approach the turbulence model is evaluated for the mixture of all phases, i.e. the mixture
velocity and mixture density are inserted into the turbulence model. The turbulent quantities of each
individual phase are computed with the density ratio between the mixture and the corresponding phase.
The applicability of this model is described in the Fluent Theory Guide [6] as follows: [...] is applicable
when phases separate, for stratified (or nearly stratified) multiphase flows, and when the density ratio
between phases is close to 1.

Per-phase In this case each phase has its own turbulent properties. Because there are additional transport
equations to be solved per phase, this model is the most computational intensive. The Fluent Theory
Guide [6] states: [...] is the appropriate choice when the turbulence transfer among the phases plays a
dominant role.

20.3.2 Implementation in OpenFOAM

In Section 19.1 the frameworks for implementing turbulence modelling within OpenFOAM are discussed. Now
we take a look on multi-phase turbulence and OpenFOAM’s frameworks for modelling turbulence.

The old framework, see Section 19.1.1, allow only for the first two of the described strategies, since only
one turbulence model is employed by the multiphase solvers. The turbulence model is generally a global object
within the solver, as is also the mesh or the run-time object.

The new framework allows for greater flexibility. In the Eulerian multiphase solvers, the turbulence model
has been moved to the phase model. Thus, each phase has its own turbulence model. This allows for all three
modelling strategies discussed in Section 20.3.1. The turbulence modelling employed by twoPhaseFEulerFoam
within the new framework is discussed in Section 26.4.

20.4 Interfacial momentum exchange

On the RHS of the momentum equation there are two types of source terms. The first term F,; is a force
density acting on the phase ¢. The second term is a force (density) coefficient K, ; which is multiplied by the
relative velocity ug = u, — uy between the phases ¢ and p.

The models for interfacial momentum transfer in OpenFOAM are implemented in a way, such that these

models return either a force or a force coefficient®. The distinction between forces and force coefficents is a

598ee http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.x1cppl21.bg.doc/language_ref/cplr061.html
for details.

60The correct denomination would be force density and force density coefficient. In the source files of OpenFOAM related to
these models, F ; and K ; are referred to as force and force coefficient, most probably for the sake of reducing typing effort. As
OpenFOAM keeps track of the physical units of its variables, we can see from the actual source codes, that the force F ; is in fact
a force density.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 112

I\Y

http://pic.dhe.ibm.com/infocenter/compbg/v121v141/topic/com.ibm.xlcpp121.bg.doc/language_ref/cplr061.html

matter of convenience. Contributions directly proportional to the velocity, e.g. drag, can be treated differently
than contributions indirectly proportional to the velocity, e.g. the virtual mass force which is proportional to
the time derivative of the relative velocity. Terms directly proportional to the velocity are numerically treated
differently than other terms.

The interfacial momentum transfer due to drag, lift and virtual mass are based on the force acting on
a single bubble. The turbulent dispersion force is observed when the turbulent eddies of the liquid phase
interact with a swarm of bubbles. This interaction tends to disperse bubble swarms [34]. Figure 40 gives a
schematic representation of the different momentum exchange mechanisms between the liquid and the gas phase.

_—
—_—
/~> Fdrag ——
s
_
X—)
\—) .
(a) Drag; the black arrow indicates the relative velocity (b) Lift
OO o OO o0 5
Virtual mass 5 26
(0] o o oo (¢]
O
m EV’irtual mass o © OO
Xﬁv ; O o 2 Ft.—disp.
% ©
©)
\ A
(c) Virtual mass; the purple arrow indicates the relative acceleration (d) Turbulent dispersion

Figure 40: Modelling approach on the example of a gas-liquid two-phase system.

20.5 Diameter models

As mentioned in the previous Section, diameter models were introduced at some point in the multiphase mod-
els. The multiphaseEulerFoam offered since its introduction in version 2.1.0 two diameter models (constant and
isothermal). With twoPhaseFulerFoam-2.3 a further diameter model was introduced, which is available only in
twoPhaseEulerFoam.

OpenFOAM Constant, no model Constant Isothermal IATE

twoPhaseFEulerFoam

2.0.x X

2.1x X

2.2.x X

2.3.x X X X
multiphaseFulerFoam

2.1.x X X

2.2.x X X

2.3.x X X

Table 4: Overview of diameter modelling in Eulerian multiphase solvers

20.5.1 No model

The older versions of twoPhaseEulerFoam (< 2.2.x) use no model for the diameter of the dispersed phase
elements (DPE). In all of these versions the phase diameter is a scalar of type dimensionedScalar that is read

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

113

© 0 N e G oA W N e

[o T S S N
© 0 N O A W N~ O

from the transportProperties dictionary.

20.5.2 Constant

The constantDiameter diameter model is the implementation of a constant diameter in a framework that
allows for a variable diameter.

Internally, the diameter is still a scalar which is read from transportProperties respectively from phaseProperties.

However, the phase model returns the diameter as a field quantity. Listing 153 shows how a volScalarField
is returned. The private variable d_ is of the type dimensionedScalar.

Foam::tmp<Foam::volScalarField>
Foam::diameterModels::constant::d ()
const
{
return tmp<Foam::volScalarField>
(
new volScalarField
(
IOobject
(
Ild|| .
phase_.U(Q) .time () .timeName (),
phase_.U() .mesh ()
),
phase_.U() .mesh (),

Listing 153: Accessing the diameter in constantDiameter.

20.5.3 Isothermal

Gas bubbles change their diameter as the ambient pressure changes. The isothermalDiameter model imple-
ments this behaviour by assuming the change of state to be isothermal.
Generally, the ideal gas law (34) governs the state of a gas.

pV =nRT (34)
under the assumption of an isothermal state
pV = const (35)
Next we introduce the bubble volume
d3
V= % (36)
Thus, we gain the relation
7 T
Pldi’g = P2d§g (37)
This leads to the isothermal diameter model
dy = d1% (38)

For the isothermalDiameter model the user needs to specify a reference pressure and diameter. Listing
154 shows the d() method of the class isothermalDiameter. The reference pressure p0O_ and diameter d0_ are
private data members of the class®. With Eqn. (38) the local diameter is computed (Line 10).

61 An underscore (_) as suffix to the variable name apparently indicates private variables. Although the coding style guidelines
of OpenFOAM (http://openfoam.org/contrib/code-style.php) do not explicitely say so. However, this is recommended style by
other communities, e.g. http://geosoft.no/development/cppstyle.html.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

114

http://openfoam.org/contrib/code-style.php
http://geosoft.no/development/cppstyle.html

Foam::tmp<Foam::volScalarField>
Foam::diameterModels::isothermal::d ()
const
{
const volScalarField& p = phase_.U().db().lookupObject<volScalarField>
(
llpll
)

return dO_x*pow(pO_/p, 1.0/3.0);

Listing 154: The method d() of the class isothermalDiameter.

20.5.4 IATE

IATE stands for interfacial area transport equation. This model is based on [23]. The IATE diameter model
solves a transport equation for the interfacial curvature kappai_.

Solves for the interfacial curvature per unit volume of the phase rather than interfacial area per
unit volume to avoid stability issues relating to the consistency requirements between the phase
fraction and interfacial area per unit volume.

Class description in IATE.H

In Section 47 we cover the derviation of the governing equations implemented in OpenFOAM from the equations
in [23].

21 Boundary conditions

When the geometry of a problem is meshed, then the boundary patches —i.e. the faces delimiting the geometry
— need to be specified. Every boundary patch is of a certain type. In Section 21.1 the possible types are
discussed.

21.1 Base types
21.1.1 Geometric boundaries

Some kinds of boundary patches can be described purely geometrically. The numerical treatment of this kind
of patches is inherently clear to the solver and needs no more modelling.

symmetry plane If a problem is symmetric, then only half of the domain needs to be modelled. The boundary
that lies in the symmetry plane is of type symmetry plane.

empty OpenFOAM creates always three-dimensional meshes. If a two-dimensional simulation needs to be
conducted, then the mesh must be one cell in thickness. The boundaries that are parallel to the considered
plane must be of the type empty to cause the simulation to be two-dimensional.

wedge If a geometry is axisymmetric, then the problem can be simplified. In this case, only a part of the
geometry — a wedge — is modelled. The additional boundaries are of type wedge.

cyclic Cyclic boundary.

processor A boundary between sub-domains created during the domain decomposition is of type processor.

21.1.2 Complex boundaries

Some kinds of boundary patches are more than just a geometric boundary of the domain. E.g. on a wall, the
no-slip condition usually applies, therefore there is need for further modelling.

patch This is the generic type for all boundaries. A boundary is of this type, if none of the following types
applies.

wall This is a special type for walls. This type is mandatory for using wall models when modelling turbulence.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 115

I\Y

The boundaries of the types patch and wall need to be specified further. These boundaries can have boundary
conditions of the primitive or derived types.

21.2 Primitive types

The most important primitive type boundary conditions are:
fixedValue The value of a quantity is prescribed directly.
fixedGradient The gradient of a quantity is prescribed directly.

zeroGradient The gradient of a quantity is prescribed to zero.

type fixedValue;
value uniform (0 O 0);

Listing 155: fixedValue boundary condition

21.3 Derived types

The boundary condition of the derived types are derived from the boundary conditions of the primitive types.
The boundary conditions of this type can be used to model more complex situations.

21.3.1 inletOutlet

The behaviour of the inletOutlet boundary condition depends of the flow direction. If the flow is directed out-
wards, then a zeroGradient boundary condition is applied. If the flow is inwards, then a fixed value is prescribed.
The value of the inflowing quantity is provided by the inletvalue keyword. The value keyword has to be
present, but it is not relevant.

type inletOutlet;
inletValue uniform (0 O 0);
value uniform (0 0 0);

Listing 156: inletOutlet boundary condition

21.3.2 surfaceNormalFixedValue

The surfaceNormalFized Value boundary condition prescribes the norm of a vector field. The direction is taken
from the surface normal vector of the patch. A positive value for refValue means, that this quantity is directed
in the same direction as the surface normal vector. A negative value means the opposite direction.

type surfaceNormalFixedValue;
refValue uniform -0.1;

Listing 157: surfaceNormalFixedValue boundary condition

21.3.3 pressurelnletOutletVelocity

This boundary condition is a combination of pressurelnletVelocity and inletOutlet.

21.4 Pitfalls
21.4.1 Syntax

When assigning a fixedValue boundary condition, OpenFOAM expects the keyword uniform or nonuniform
after the value keyword.

Listing 158 shows the file 0/k. There the inlet boundary definition differs from Listing 155. Note the missing
uniform keyword. The reaction of OpenFOAM differs from the value after the keyword version.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

116

Listing 159 shows the warning message OpenFOAM issues, when the value after the keyword version is
2.0 like in Listing 158. In this case, OpenFOAM assumes uniform.

If the value after the keyword version is 2.1, then OpenFOAM will issue an error message like in Listing
160.

In both cases OpenFOAM-2.1.x was used. The author assumes the reason for this distinction between version
2.0 and 2.1 lies in an extension of the possible boundary conditions See the release notes of OpenFOAM-2.1.0
(http://www.openfoam.org/version2.1.0/boundary-conditions.php).

FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object k;
}

J/ % k ok ok ok ok x kK ok ok ok ok ok ok ok k k >k ok ok k k k kx *x * * * * *x *x x *x *x *x *x //

dimensions [0 2 -2 0 0 0 0];
internalField uniform 1e-8;
boundaryField
{
inlet
{
type fixedValue;
value 1e-8;
}

Listing 158: The file 0/k

--> FOAM Warning
From function Field<Type>::Field(const word& keyword, const dictionary&, const label)
in file /home/user/OpenF0AM/OpenFOAM-2.1.x/src/0OpenF0AM/1nInclude/Field.C at line 262
Reading "/home/user/OpenFOAM/user-2.1.x/run/twoPhaseEulerFoam/bubblePlume/case/0/k::
boundaryField::inlet" from line 25 to line 26
expected keyword ’uniform’ or ’nonuniform’, assuming deprecated Field format from Foam
version 2.0.

Listing 159: Warning message: missing keywords

--> FOAM FATAL IO ERROR:
expected keyword ’uniform’ or ’nonuniform’, found on line 26 the doubleScalar 1e-08

file: /home/user/OpenFO0AM/user-2.1.x/run/twoPhaseEulerFoam/bubblePlume/case/0/k::boundaryField
::inlet from line 25 to line 26.

From function Field<Type>::Field(const word& keyword, const dictionary&, const label)
in file /home/user/0OpenF0AM/OpenFOAM-2.1.x/src/0OpenF0AM/1nInclude/Field.C at line 278.

FOAM exiting

Listing 160: Warning message: missing keywords

21.5 Time-variant boundary conditions

Time-variant boundary conditions can help to avoid problems from an inept initialisation of the solution data.
The most easy initialisation is to prescribe all values to be zero throughout the domain, see Listing 119 in
Section 17.

At the start of a simulation when the non-zero values of some boundary meet the zero values of the neigh-
bouring cells stability problems may arise due to the large relative velocities. One solution would be to choose
a very small time step at the beginning. Another solution would be to prescribe a time-variant boundary con-
dition. Thus, the field-values at the boundary are initially small and grow during a certain time span to their
final value.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

http://www.openfoam.org/version2.1.0/boundary-conditions.php

21.5.1 uniformFixedValue

This boundary condition is an generalisation of the fixedValue BC. See http://www.openfoam.org/version2.
1.0/boundary-conditions.php.

Listing 161 shows the definition of a time-variant boundary condition with a fixed value. Between the time
t = 0.0s and ¢t = 5.0s the value of the boundary condition is linearly interpolated between the values for both
ends of the interval. After this interval has ended, the value of the boundary condition remains constant.

inlet
{
type uniformFixedValue;
uniformValue table
(
(0.0 (0.0 0.0 0.0)
(5.0 (0.0 0.0 0.1)
)
}

Listing 161: Definition of a time-variant boundary condition

Pitfall: Two-phase solvers

This boundary condition does not work with two-phase solvers.

22 The Lagrangian world

In OpenFOAM not only the finite volume method (FVM), which is part of the Eulerian world, is implemented.
There are also Lagrangian methods available. The Lagrangian methods available in OpenFOAM cover fields
such as:

molecular dynamics

o discrete particle method

e sprays

o general Lagrangian particle tracking
e reacting and combusting particles

This section covers general Lagrangian particle tracking. The basics behind the Lagrangian methods apply to
all models listed above, e.g. the molecule and the spray parcel are based on the particle class.

22.1 Background
22.1.1 Interaction between Lagrangian particles and Eulerian flow

The coupling between Lagrangian particles and the surrounding flow can be characterised by their degree of
interaction.

one-way two-way four-way
flow acts on particles flow acts on particles flow acts on particles
particles act on the flow particles act on the flow

particle-particle collisions

e.g. snow drift e.g. dense particulate flows e.g. fluidized beds

Table 5: Levels of coupling between Lagrangian particles and (Eulerian) flow

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 118

I\Y

http://www.openfoam.org/version2.1.0/boundary-conditions.php
http://www.openfoam.org/version2.1.0/boundary-conditions.php

© 0 N e s W N R

I e e e =
o U A W N = O

22.1.2 Particle tracking

For particle tracking there are two general approaches, the lose-find method and the face-to-face method [37, 30].
Knowing the cell in which a particle is located is important when interaction with the flow fields is to be
considered.

The lose-find method tracks the particle along its path according to its velocity. The information on the cell
in which the particle is located, however, is lost in this process. Hence, this method is referred to as lose-find.
Whenever, the current cell in which the particle is located is needed, the neighbouring cells need to be searched
until the particle is found. This approach can pose some problems [37].

The face-to-face method, which is implemented by OpenFOAM, tracks the particles to the cell faces, updates
the cell information and tracks the particle further on [30]. Thus, only once at the start of the simulation the
cells at the particles’ locations need to be searched. During the simulation the cell index to which a particle
belongs is continuously updated whenever the particle crosses a cell face.

22.2 Libraries

OpenFOAM offers two choices for implementing or using Lagrangian particle tracking (LPT). A discussion on
these can be found in [32].

particle

The class particle is the root of all LPT in OpenFOAM, since it implements the tracking (i.e. the motion) of
the particles itself.

22.2.1 Dbasic solidParticle

The basic choice for LPT is the class solidParticle, which is derived from particle. The class solidParticle
adds little to its ancestor class. The two additional data members are the particle’s diameter and velocity. The
two most important methods of solidParticle are move() and hitWallPatch(). With these two methods the
particle’s drag (via modifying the particle’s velocity in move()) and the wall interaction (i.e. wall collision, via
modifying the particle’s velocity in hitWallPatch()) can be implemented. This is sufficient for one-way and
two-way coupled simulations.

22.2.2 intermediate parcels

The advanced implementation of LPT in OpenFOAM is the intermediate library%? in $FOAM_SRC/lagrangian.
This library contains some heavily templated classes which provide a general framework to implement a range
of additional models for LPT, e.g. collision modelling, heat transfer or reactions. The intermediate library was
first published with OpenFOAM-1.5betab3.

The basis for LPT itself is again the class particle, although hidden under layers of templates, Listings 162
and 163 show a prime example of OpenFOAM’s template insanity.

namespace Foam
{
typedef ReactingMultiphaseParcel
<
ReactingParcel
<
ThermoParcel
<
KinematicParcel
<
particle
>
>
>
> basicReactingMultiphaseParcel;

62$F0AM_SRC/lagrangian/intermediate is actually a library, since it is a separate compitation unit and is compiled into $(FOAM_
LIBBIN)/liblagrangianIntermediate
63http://www.openfoam.org/download/versionl.5beta.php

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 119

I\Y

http://www.openfoam.org/download/version1.5beta.php

17

Lo T N

© 0 N o U oA W N e

[
o

/* the rest of the code ... */

Listing 162: The class definition of the ReactingMultiphaseParcel class, in
basicReactingMultiphaseParcel.H

The class KinematicParcel is an example for the hardships one faces when trying to understand C++.
KinematicParcel is a templated class, with ParcelType as template parameter. In addition KinematicParcel
also is derived from its template parameter ParcelType.

Thus, KinematicParcel is a templated class built around ParcelType, however, it is a ParcelType too (by
inheritance).

template<class ParcelType>
class KinematicParcel

public ParcelType
{
public:

/* the rest of the code ... */

Listing 163: The class definition of the KinematicParcel class, in KinematicParcel.H

To underpin the claim made, that particle is the very root of LPT, we have a look at the most basic
parcel-based class of the intermediate library of OpenFOAM. Listing 164 shows the definition of the class
basicKinematicParcel, which is the class particle passed to the templated class KinematicParcel as a tem-
plate parameter. From one of the above paragraphs, we know that this means also that basicKinematicParcel
is derived from particle, hence it is a particle.

namespace Foam

{
typedef KinematicParcel<particle> basicKinematicParcel;
template <>
inline bool contiguous<basicKinematicParcel>()
{
return true;
}
}

Listing 164: The class definition of the basicKinematicParcel class, in basicKinematicParcel.H

22.3 Cloudy, with a chance of particles

In OpenFOAM and its class layout there is the distinction between the single particle and the entirety of all
particles. The particle class defines the features and the behaviour of the single particle. The Lagrangian solver,
however, needs to deal with all particles. Not all particles are equal, but the solver should not have to deal with
this. In order to provide a common interface for the solver, OpenFOAM’s creators thought of the cloud class.

The cloud® is class acts as a connection between the solver and the individual particles. It makes sure that
commands are passed on to all particles within the cloud.

22.3.1 The code to rule them all

This section is one of the many examples of OpenFOAM’s sources being case-sensitive. The class Cloud and
the class cloud are completey different things. Admittedly, Cloud is derived from cloud, thus every Cloud s
a cloud, however, not vice-versa. Always keep in mind: case matters.

The Cloud

A class is best described by taking a look on the code that actually defines it. Listing 165 shows from which
classes Cloud is derived from. Looking at the inheritance actually tells us what the class Cloud is, since an
inheritance relation is an “is a” relation. If A is derived from B, then A is a B.

64Not to be mixed up with the “cloud” in terms of information technology (IT) as in cloud storage, cloud computing, etc..

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

120

2 TS TN T SO R O

The listing shows us, that Cloud is a cloud and a IDLList. This poses two new questions, what is a cloud
and a IDLList?

template<class ParticleType>
class Cloud

public cloud,
public IDLList<ParticleType>

// code

Listing 165: The class definition of Cloud in the file Cloud.H; the ancestry.

In anticipation of the following paragraphs we can state, that the inheritance from two base classes is an
example of applied division of labour. As we will see, the cloud heritage is in charge of input and output (I/0O)
whereas the IDLList legacy deals with the management of the single particles which form the cloud.

The cloud

The class cloud is an object registry similar to the mesh class®®. cloud is derived from the class objectRegistry,
and so are fvMesh and Time. This enables us to register fields with the particle cloud. The class objectRegistry
is in turn derived from regIOobject which is in turn derived from IOobject. Thus, the ancestry of cloud
allows us to read and write the particle cloud to disk®. See Sections 39.6 and 39.7 for a more detailed discussion
on I/O and the concepts around the class regIOobject.

The IDLList

The IDLList is an intrusive doubly-linked list. The concept of a linked list is taught at programming classes
when it comes to objects and data-structures. The traditional linked-list consists of a list class and a node class.
The node class contains a pointer to, or the list-element itself. If the node class is implemented in a generic
fashion, using templates, then one list implementation is sufficient for all datatypes. Otherwise, the node class
would need to be implemented specifically for every datatype that is to be used by the list.

An intrusive linked-list is a very efficient implementation of a linked-list. However, the actual layout differs
from the standard layout of a linked list®”. In an intrusive list, the list element serves also as the node. Figure
41 compares the schematic layouts of traditional and intrusive linked lists.

Intrusive linked-lists are generally considered as being much more efficient than traditional linked-lists®®. One
of the downsides of using intrusive lists is that the implementation of the datatype which is to be used within
the list is mangled with the implementation of the list itself. Generally, this (mangling the implementation
of unrelated concepts) is considered a bad practice in object-oriented design (OOD). However, due to the
performance gain, intrusive lists are widely used in fields where performance beats conformity with standards,
such as computer games or number crunching.

Again, we can take a look at the actual source code to find out what is really going on. Figure 42 shows the
class diagram behind the singly- and doubly-linked intrusive lists. This diagram is in fact a great example of
how far C++ developers can go with abstraction and encapsulation. The classes SLListBase and DLListBase
define the behaviour as being single-linked or doubly-linked. The classes UILList and ILList are more or
less helper or base classes. The class UILList provides STL-conforming iterators, whereas ILList adds some
member functions. The reason for UILList and ILList being separate classes is unknown to the author.

In the case of classic linked lists (non-intrusive lists, either singly- or doubly-linked), the class LList derived
from its template parameter LListBase provides the base class for concrete non-intrusive linked lists.

65Tn fact the class polyMesh is derived from objectRegistry. fvMesh is in turn derived from polyMesh. The mesh in a solver
or an utility application is of the type fvMesh. Almost all solvers and utilties include the file createMesh.H, which resides in
OpenF0AM/include of your installation.

66Fields, such as volScalarField and others, are also derived from regIOobject via GeometricField and DimensionedField

67http://www.boost.org/doc/libs/1_43_O/doc/htm1/intrusive/intrusive_vs_nontrusive.html

68http://www.boost.org/doc/libs/1_58_0/doc/html/intrusive/performance.html

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

http://www.boost.org/doc/libs/1_43_0/doc/html/intrusive/intrusive_vs_nontrusive.html
http://www.boost.org/doc/libs/1_58_0/doc/html/intrusive/performance.html

List

Node* head
A,
Node Node
Node* prev Node* prev -
Node* next Node* next
MyClass* val MyClass* val
MyClass MyClass

. Y Link prev Link prev
MyClass MyClass Link next Link next
elem elem // class data // class data

(a) Traditional doubly-linked list. (b) Intrusive doubly-linked list.

Figure 41: Schematic diagrams of doubly-linked lists.

DLListBase ListBase SLListBase
link* first link* first
link* last__ label nElmts__
label nElmts link* first()
link* first() - ListBase, T
link* last() UILList

T* first()

T* last()

i ListBase, T

ILList

clear()

AF

4'* DLListBase 4L SLListBase

IDLList i ISLList |

| |

Figure 42: The class hierarchy needed for intrusive lists of objects of type T; this diagram can be regarded as a
subset of the class diagram for singly- and doubly-linked lists, both classic and intrusive.

22.4 Times of Use
22.4.1 Not so telling error messages
Out of domain

As OpenFOAM’s Lagrangian particle framework keeps track of the cells in which a particle is located, a
Lagrangian solver needs to determine the cell label of each particle’s initial position. OpenFOAM’s particle
tracking algorithm is described among other resources in [33, 30, 37].

When a particle is placed outside the domain, i.e. the position in the positions file is outside the domain,
OpenFOAM is unable to find a cell label for this very particle. Note that failing to find a cell which contains the
particle’s location may happen also for other reasons than placing it outside the domain. As the error message
in Listing 166 suggests, this might also happen through a combination of insufficient write precision and do-
main decomposition or reconstruction. However, plainly putting them outside the domain is also a possibitily,
especially, when a script is used to create the initial particle distribution.

--> FOAM FATAL ERROR:

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 122

I\Y

cell, tetFace and tetPt search failure at position (0.0026 0.0026 0.4502)

for requested cell O
If this is a restart or reconstruction/decomposition etc. it is likely that the write

precision is not sufficient.
Either increase ’writePrecision’ or set ’writeFormat’ to ’binary’

From function void Foam::particle::initCellFacePt ()
in file /home/user/OpenFO0AM/OpenFO0AM-2.3.x/src/lagrangian/basic/lnInclude/particlel.H at

line 758.

FOAM aborting

Listing 166: Error message issued by OpenFOAM when a Lagrangian simulation is started with particle positions
defined outside of the domain; checkMesh reports for this case an Owerall domain bounding box (0 0 0) (0.15
0.15 0.45); Note the position (Line 3) at which the search failure occurs

I\Y

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 193
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Part V
Solver

23 Solution Algorithms

The solution of the Navier-Stokes equations require the solution of the coupled equations for the velocities and
the pressure field. In order to be able to gain a solution, there are several solution algorithms. All of these
algorithms try to compute velocities and pressure seperately and therefore decouple the problem.

To decouple the computation of velocity and pressure a predictor-corrector strategy is followed.

23.1 SIMPLE

Figure 43 shows the flow chart of the SIMPLE algorithm. The SIMPLE algorithm predicts the velocity and
then corrects both the pressure and the velocity. This is repeated until a convergence criteria is reached. The
labels in Figure 43 are related to the terminology used in the source code of the simpleFoam solver. The solution
procedure can be described as follows

1. Check if convergence is reached — simple.loop()
2. Predict the velocities using the momentum predictor— UEqn.H
3. Correct the pressure and the velocities— pEqn.H
4. Solve the transport equations for the turbulence model®®— turbulence->correct ()
5. Go back to step 1
In OpenFOAM the SIMPLE algorithm is used for steady-state solvers.

[Start of time step]

] false -
simple.loop() [End of time step J

®true
A4

] UEqn.H \

l

’ pEqn.H ‘

!

’ turbulence->correct() ‘

]

Figure 43: Flow chart of the SIMPLE algorithm

69In case of a laminar simulation an empty function is called. Turbulence is modelled in OpenFOAM in a very generic way.
Therefore, a laminar simulation uses the laminar turbulence model.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 124

S I N

© o N o wu

11
12
13
14

23.1.1 Predictor

The predictor of simpleFoam is a momentum predictor.

// Momentum predictor
tmp<fvVectorMatrix> UEqn

(
fvm::div(phi, U)
+ turbulence->divDevReff (U)
sources (U)
);

UEqn () .relax () ;
sources.constrain(UEqn());

solve (UEqn() == -fvc::grad(p));

Listing 167: Predictor in UEgn.H of simpleFoam

23.1.2 Corrector

The corrector is used to correct the pressure field by using the predicted velocity. This corrected pressure is

used to correct the velocities by solving the continuity equation.
The non-orthogonal pressure corrector loop is necessary only for non-orthogonal meshes [39].

p.boundaryField () .updateCoeffs () ;

volScalarField rAU(1.0/UEqn().A(Q));
U = rAUxUEqn () .HQ);
UEgn.clear () ;

phi = fvc::interpolate(U, "interpolate (HbyA)") & mesh.Sf();
adjustPhi (phi, U, p);

// Non-orthogonal pressure corrector loop
while (simple.correctNonOrthogonal ())
{

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phi)
)
pEqn.setReference (pRefCell, pRefValue);

pEqn.solve ();

if (simple.finalNonOrthogonallIter ())
{
phi -= pEqn.flux();
}
}

#include "continuityErrs.H"

// Explicitly relax pressure for momentum corrector
p.relax();

// Momentum corrector

U -= rAUxfvc::grad(p);
U.correctBoundaryConditions () ;
sources.correct (U);

Listing 168: Corrector in pEgn.H of simpleFoam

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

125

23.2 PISO

The PISO algorithm also follows the predictor-corrector strategy. Figure 44 shows the flow chart of the PISO
algorithm. The velocity is predicted using the momentum predictor. Then, the pressure and the velocity
is corrected until a predefined number of iterations is reached. Afterwards, the transport equations of the
turbulence model are solved.

[Start of time step]

|

] UEqn.H \

A

pEqn.H

’ turbulence->correct() ‘

!

[End of time step }

Figure 44: Flow chart of the PISO algorithm

24 pimpleFoam

pimpleFoam is a transient incompressible solver. The solver is described in the file pimpleFoam.C as follows:

Large time-step transient solver for incompressible, flow using the PIMPLE
(merged PISO-SIMPLE) algorithm.

Turbulence modelling is generic, i.e. laminar, RAS or LES may be selected.

24.1 Governing equations

24.1.1 Continuity equation

The general continuity equation reads as follows:
dp

E+v “(pu) =0 (39)

we now assume incompressible fluids: p = const

V-u=0 (40)
or in alternative notation
div(u) = 0 (41)
8ui
=0 42
oz, (42)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 126

24.1.2 Momentum equation
Departing from the Navier-Stokes equations, the momentum equation of pimpleFoam are derived.
Jdpu

W+V(puu)+v T=-Vp+g (43)

because we assume a constant density we can divide by p

Ou 1 Vp g
- +Vu)+ -V - 7=—-—542 44)
ot p PP (
The last term is defined a general source term
du 1 Vp
i v/ IV =% 45
5 + V(uu) + p T ; +Q (45)
the shear stresses and the pressure are denoted by new symbols: 7 = Re/7 und b=p
Ju eff
E+V(uu)+V'R- =-Vp+Q (46)

The Boussinesq hypothesis allows us to add the Reynolds stresses to the shear stresses. This stress tensor
— containing shear as well as Reynolds stresses — is denoted R/, the effective stress tensor. Both RAS as well
as LES turbulence models are based on the Boussinesq hypothesis.

R = - (Vau+ (Vu)”) (47)
Ou; ~ Ouy
eff _ _yets ((Qui | O
R;; v <81;j + axi) (48)

The trace of 7 fulfills the continuity equation for incompressible fluids

tr(R7) = RS/ = —2vef <6“) =0 (49)
&vi
aui
=V -u=0 50
o5, ~ VU (50)
Therefore, we can replace R/ with the deviatoric part of R¢//

1
R = dev(RT) + —tr(RY)I (51)

——— 3

deviatori t
eviatornc par hydrostatic part

1
dev(R//) = R/ — Ztr(RE) 1T (52)
3~

=0

Therefore, the momentum equation can be rewritten

0
8—‘: +V(uu) +V - (dev(RT)) = —Vp+Q (53)
=div(dev(Re/T))
Finally, we use Eq. (47)
R =~ (Vu + (Vu)T) (47)
to gain
0
S+ V(uw) + V- (dev(—v (Vu+ (Vw)"))) = ~Vp+ Q (54)
v This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 197

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

© 0 N o U oe W N e

e e
B W N o= O

15
16
17
18
19

24.1.3 Implementation

The momentum equation is implemented in the file UEqn.H. The first two terms of Eq. (54) can easily be
identified in the source code in Listing 169.

The first term is the local derivative of the momentum — due to the incompressibility of the fluid, the density
was eliminated — can be found in line 5 of Listing 169. Here, the instruction in the source code reads very much
the same as the mathematical notation.

Ou

ot

The second term of Eq. (54) is the convective transport of momentum. The use of the identifier phi should
not lead to confusion. In order to read the equations from the source code, phi can be replaced with U without

changing the meaning of the equations. The reason why phi is used in the source code lies in the solution
procedure. See Section 46 for a detailled discussion about phi.

& fvm: :ddt (U)

V(uu) & fvm: :div(phi, U)
——
div(uu)
The third term of Eq. (54) is the diffusive momentum transport term. Diffusive momentum transport is
caused by the laminar viscosity as well as turbulence. Therefore, the turbulence model handles this term. See
line 7 of Listing 169.

V - (dev(Re/T)) & turbulence->divDevReff (U)

=div(dev(Re/T))

The terms on the rhs of Eq. (54) are the pressure gradient and the source term.

—Vp & -fvc::grad(p))
——
=—gradp
Q & sources (U)
// Solve the Momentum equation
tmp<fvVectorMatrix> UEqn
(
fvm::ddt (U)
+ fvm::div(phi, U)
+ turbulence->divDevReff (U)
)
UEqn () .relax () ;
sources.constrain(UEqn());
volScalarField rAU(1.0/UEqn().AQ));
if (pimple.momentumPredictor ())
{
solve (UEqn() == -fvc::grad(p) + sources(U));
}

Listing 169: The file UEgqn.H of pimpleFoam

24.2 The PIMPLE Algorithm — or, what’s under the hood?

This Section deals with the way pimpleFoam and twoPhaseFEulerFoam, which also uses the PIMPLE algo-
rithm, work. Therefore, we examine the implementation of pimpleFoam. Listing 170 shows the main loop of
pimpleFoam.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

128

© o N e oA W N R

NN NN NN R E e R e e s e e
S0 0 R W KN RO © NG A W R R O

The first instruction is the loop over all time steps. Then there are some operations — the three #include
instructions — concerning time step control. After incrementing the time step (Line 7), the PIMPLE loop comes
(from Line 10 onwards).

Inside this loop, first the momentum equation is solved (Line 12), then the pressure correction loop is entered
(Line 17).

At the end of the PIMPLE loop the turbulent equations™ — if there are any present”’ — are solved (Line
22). At the end of each time step the data is written.

while (runTime.run())

{
#include "readTimeControls.H"
#include "CourantNo.H"
#include "setDeltaT.H"

runTime++;

// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{

#include "UEqn.H"

// --- Pressure corrector loop
while (pimple.correct())
{
#include "pEqn.H"
}

if (pimple.turbCorr())
{
turbulence->correct ();
}
}

runTime.write () ;

}

Listing 170: The main loop of pimpleFoam

Figure 45 shows the flow chart of the PIMPLE algorithm. This algorithm is executed every time step. If the
PIMPLE loop is entered only once, then the algorithm is essentially the same as the PISO algorithm. Listing
177 draws this conclusion from the code itself.

24.2.1 readTimeControls.H

In line 3 of Listing 170 the file readTimeControls.H is included to the source code using the #include prepro-
cessor macro. This is a very common way to give the code of OpenFOAM structure and order. Code which is
used repeatedly is outsourced into a seperate file. This file is then included with the #include macro. Thus,
code duplication is prevented. The file readTimeControls.H might be included into every solver that is able to
use variable time steps. If this code was not outsourced into a seperate file, this code would be found in every
variable time step solver. Maintaining this code, would be tiresome and prone to errors.

Listing 300 shows the contents of readTimeControls.H. The first instruction reads from controlDict the
adjust TimeStep parameter. If there is no entry matching the name of the parameter ("adjustTimeStep"), then
a default value is used. So, omitting the parameter adjustTimeStep in controlDict will result in a simulation
with a fixed time step.

This is a very straight forward example of determining the behaviour of a solver using only the source code.
In this case the names of the source file as well as variable and function names are rather self explaining. In
other cases one has to dig deeply into the code to learn about what a certain command does.

70In case of a k-e model, there are two transport equations to be solved. Other turbulence models require the solution of less or
none transport equation.
"1In case of a laminar simulation, no operation is carried out.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 129

[N N A VI

[Start of time step }

false

pimple.loop() [End of time step }

®true
\ 4

] UEqn.H \

pimple.correct() pEqn.H

false

true

turbulence->correct() ‘

Figure 45: Flow chart of the PIMPLE algorithm

const bool adjustTimeStep =
runTime.controlDict () .lookupOrDefault ("adjustTimeStep", false);

scalar maxCo =
runTime.controlDict () .lookupOrDefault<scalar>("maxCo", 1.0);

scalar maxDeltaT =
runTime.controlDict () .lookupOrDefault<scalar>("maxDeltaT", GREAT);

Listing 171: The content of readTimeControls.H

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

130

© 0 N e U A W N e

e e e
S e)

-
o

16

24.2.2 pimpleControl

Examining the files pimpleControl.H and pimpleControl.C will generate some knowledge of the inner life of
pimpleFoam.

Solution controls

Listings 172 and 173 show parts of pimpleControl.H and pimpleControl.C. Listing 172 shows the declaration
of protected” data in pimpleControl.H.

// Protected data
// Solution controls
//- Maximum number of PIMPLE correctors
label nCorrPIMPLE_;

//- Maximum number of PISO correctors
label nCorrPISO_;

//- Current PISO corrector
label corrPISO_;

//- Flag to indicate whether to only solve turbulence on final iter
bool turbOnFinallterOnly_;

//- Converged flag
bool converged_;

Listing 172: Protected data in pimpleControl.H

void Foam::pimpleControl::read()
{

solutionControl::read(false);

// Read solution controls

const dictionary& pimpleDict = dict();

nCorrPIMPLE_ = pimpleDict.lookupOrDefault<label>("nOuterCorrectors", 1);

nCorrPISO_ = pimpleDict.lookupOrDefault<label>("nCorrectors", 1);

turbOnFinalIterOnly_ = pimpleDict.lookupOrDefault<Switch>("turbOnFinallterOnly", true);

Listing 173: Read solution controls in pimpleControl.C

Reading the code we can see which keyword in the PIMPLE dictionary — it is a part of the fvSolution dictionary
(see Section 8.5) — is connected to which variable in the code. Three of the protected variables of Listing 172
are assigned in Listing 173. One of them has the same name in both the code and the dictionary. The other
two have different names.

Pitfall: no sanity checks

The two variables nCorrPimple and nCorrPiso control the solution algorithm. If the corresponding entry in
the PIMPLE dictionary in fvSolution is missing, then default values are used, see Section 39.3 for details behind
the method lookupOrDefault(). However, the user can provide any number in fvSolution as long as it is
legal™. Thus, a zero or negative number is a legal entry from the source codes point of view. With respect to
the solution algorithm a zero or negative entry makes no sense at all.

The connection between keywords and the algorithm

The keyword nOuterCorrectors translates — with the help of Listing 173 to the variable nCorrPIMPLE_. This
variable controls how often the PIMPLE loop is traversed. Listing 174 shows parts of the definition of the

72Most programming languages provide access specifiers to specify the visibility of variables. The keyword protected means,
that the variables can be accessed only inside the class pimpleControl and all classes inherited from pimpleControl.
73See Section 39.4.2 for details on the label datatype.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

© 0 N o U A W N e

T T T o ey
B =S 0w N G A ® N = O

© 0 N e oA W N R

==
= o

function loop() of the class pimpleControl. The return value of this function decides whether the PIMPLE
loop is entered or not. In line 5 of Listing 174 an internal counter is incremented — the ++ operator of C++
adds 1 to the variable the operator is applied to. Afterwards, the internal counter is compared to the value
of nCorrPIMPLE_. If this internal counter is then equal to the sum of nCorrPIMPLE_ + 1, then the function
loop() returns false.

The internal counter is initialised to the value of 0. Listing 175 shows the constructor of the class solutionControl.

The class pimpleControl is derived from solutionControl. So, every instance of pimpleControl has an inter-
nal counter corr_ inherited from solutionControl. Line 9 of Listing 175 how the counter corr_ is initialised
to zero.

bool Foam::pimpleControl::loop ()
{
read () ;

corr_++;

/* code removed for the sake of brevity x*/

if (corr_ == nCorrPIMPLE_ + 1)
{
if ((!residualControl_.empty()) && (nCorrPIMPLE_ != 1))
{
Info<< algorithmName_ << ": not converged within "
<< nCorrPIMPLE_ << " iterations" << endl;
X
corr_ = 0;

mesh_.data::remove("finallteration");
return false;

}

/* code continues */

Listing 174: Some content of pimpleControl.C

Foam::solutionControl::solutionControl (fvMesh& mesh, const word& algorithmName)

mesh_(mesh),
residualControl_(),
algorithmName_(algorithmName),
nNonOrthCorr_(0),
momentumPredictor_(true),
transonic_(false),

corr_(0),

corrNonOrtho_ (0)

{r

Listing 175: The constructor of the class solutionControl in solutionControl.C

The keyword nCorrectors translates — with the help of Listing 173 to the variable nCorrPISO_. This
variable controls how often the PISO loop — or the corrector loop — is traversed. Listing 172 shows, that there
are two variables related to the PISO loop, nCorrPIS0_ and corrPISO_. The first variable is the limit and the
second is the counter.

nCorrPISO_ is read from the fvSolution dictionary by the use of the nCorrectors keyword. This number
tells the solver, how many times the corrector loop should be traversed. The corrector loop is a feature of the
PISO algorithm. Hence, the maximum number of corrector loop iterations is called nCorrPISO_.

The variable corrPIS0O_ is declared in the constructor of the class pimpleControl, see Listing 177. There
the variable is initialised to zero.

Listing 176 shows the definition of the function correct () of the class pimpleControl. The return value of
this function controls if the corrector loop is entered. In line 3 the counter corrPISO_ is incremented every time
this function is called. In line 10 the value of the counter is compared to the maximum number of corrector
loop iterations.

inline bool Foam::pimpleControl::correct ()

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

132

Bow N

© o N o «

11
12
13
14
15
16
17
18
19

© o N e G A W N e

e e e
© W N o U R W N = O

corrPISO_++;

if (debug)
{
Info<< algorithmName_ << " correct: corrPISO = " << corrPISO_ << endl;

}

if (corrPISO_ <= nCorrPISO_)
{
return true;
}
else
{
corrPISO_ = 0;
return false;
}
}

Listing 176: The inline function correct() in pimpleControlI.H

PIMPLE or PISO algorithm

Listing 177 shows parts of the code of the constructor of the class pimpleControl. At first some data fields are
set to initial values. Then the read() function is called, this function is shown in Listing 173. After reading the
solution controls the variable nCorrPIMPLE_ is tested. If this value is equal to one, then the solution algorithm
equates the PISO algorithm. In this case an according message is printed to the Terminal.

Foam::pimpleControl::pimpleControl (fvMesh& mesh)
solutionControl (mesh, "PIMPLE"),
nCorrPIMPLE_ (0),
nCorrPISO_(0),
corrPISO_(0),
turbOnFinalIlterOnly_(true),
converged_(false)

read () ;

if (nCorrPIMPLE_ > 1)

{
/* code removed for shortness of listing */
}
else
{
Info<< nl << algorithmName_ << ": Operating solver in PISO mode" << nl << endl;
}
}

Listing 177: Constuctor of pimpleControl in pimpleControl.C

25 twoPhaseFEulerFoam
This section is valid for OpenFOAM-2.0 til OpenFOAM-2.2.

25.1 General remarks

twoPhaseEulerFoam is a solver for two-phase problems. According to the CFD-Ounline Forum (http://www.
cfd-online.com/Forums/openfoam/) this solver as well as bubbleFoam is based on the PhD thesis of Henrik
Rusche [42]. In the course of an update of OpenFOAM-2.1.x in July 2012 the solution algorithm of the continuity
equation was changed.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 133

http://www.cfd-online.com/Forums/openfoam/
http://www.cfd-online.com/Forums/openfoam/

© W N e TR W N =

L T N T N o o
GOR W RN RO ©® N0 U A ® N = O

25.1.1 Turbulence

twoPhaseEulerFoam can only use the k-e¢ turbulence model. This model is so to say hardcoded and can only be
turned on or off.

25.1.2 Kinetic theory

twoPhaseEulerFoam can make use of the kinetic theory for granular simulations, e.g. air flowing through a bed
of small particles. This model can also be turned on or off.
In the following sections kinetic theory is ignored for the reason of keeping listings and explanations short.

25.2 Solver algorithm

twoPhaseEulerFoam is based on the PIMPLE algorithm. However, there are some modifications necessary for
solving two-phase problems. Listing 178 shows the main part of this solver. The first two lines inside the main
loop (pimple.loop()) differ from pimpleFoam. These lines deal with the two-phase continuity equation and
the inter-phase momentum exchange coefficients.

Next, in line 6, comes the momentum predictor It contains the momentum equations for both phases and
solves them subsequently, thus the filename UEqgns.H.

After the predictor comes the corrector. The corrector is in fact a corrector loop. Inside this loop
(pimple.correct()) the correction of pressure and velocity is computed. Inside the corrector loop (line 15)
there is also a conditional second call of the continuity equation. The condition consists of two boolean state-
ments. The first is a boolean variable, which is set in a dictionary by the user. The second is generated by the
solution control.

After the corrector loop the total time derivatives of the velocities are calculated. Finally, the turbulent
transport equations are solved. In this case it is the k-e model that is called explicitly (line 23).

// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{

#include "alphaEgn.H"
#include "liftDragCoeffs.H"
#include "UEgns.H"

// --- Pressure corrector loop
while (pimple.correct())
{

#include "pEqn.H"

if (correctAlpha && !'pimple.finallter())
{
#include "alphaEqn.H"
}
}

#include "DDtU.H"

if (pimple.turbCorr())
{
#include "kEpsilon.H"
}
}

Listing 178: The main loop of twoPhaseFEulerFoam

Figure 46 shows the flow chart of all operations that are performed during one time step.

25.2.1 Continuity

The continuity equation is implemented in the file alphaEqn.H.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 134

[Start of time step }

false
pimple.loop() End of time step }

®true
v

’ alphaEqn.H ‘

!

’ lifttDrag.H ‘

!

] UEqn.H \

pimple.correct() pEqn.H ‘

| DDtU.H |
correctAlpha()
& Ifinallter()
false
O
alphaEqn.H ‘
true l
kEpsilon.H

Figure 46: Flow chart of the main loop of twoPhaseEulerFoam

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 135

[T VR R

Second call

In line 15 of Listing 178 the continuity equation is called again inside an if-statement. The condition depends
on two boolean expressions.

The first, correctAlpha, is controlled by the fvSolution dictionary. Assigning a value to this keyword — the
keyword has the same name as the boolean variable in the source code — is mandatory. The reading operation
of this keyword from the dictionary can be found in the source file readTwoPhaseEulerFoamControls.H and is
shown in Listing 179.

Three keywords are looked up from the fvSolution dictionary. All of them are related to the solving
algorithm for the continuity equation. Those entries are read from the dictionary by invoking the function
lookup(). See Section 39.3 for a detailed discussion about looking up keywords from dictionaries.

#include "readTimeControls.H"

int nAlphaCorr(readInt (pimple.dict().lookup("nAlphaCorr")));
int nAlphaSubCycles(readInt (pimple.dict().lookup("nAlphaSubCycles")));
Switch correctAlpha(pimple.dict().lookup("correctAlpha"));

Listing 179: The content of readTwoPhaseEulerFoamControls.H

The second boolean expression controlling the second call in line 15 of Listing 178 is controlled by the number
of iterations of the PIMPLE loop. See Section 24.2 for a discussion about the PIMPLE algorithm.

The expression pimple.finalIlter() is true when the last iteration of the PIMPLE algorithm is entered.
Therefore, the expression !pimple.finallter() is true if, and only if, the value of nOuterCorrectors or
nCorrPIMPLE_ is greater than one. Because only then, there is more than one PIMPLE iteration and only then,
there is an iteration other than the final one.

If the PIMPLE loop is traversed only once, then alphaEqn.H is not entered a second time.

The file alphaEqn.H

The examination of the file alphaEqn.H results in the flow chart in Figure 47. The corrector loop is traversed a
specified number of times. This number is set by the keyword nAlphaCorr of the fvSolution dictionary. The
corrector loop is a simple for loop.

Inside the corrector loop is a sub-cycle loop. Inside this loop the continuity equation is solved. After the
sub-cycle the volume fraction of the continuous phase is updated. The sub-cycle loop is also traversed a specified
number of times. This number is set by the keyword nAlphaSubCycles of the fvSolution dictionary.

When the corrector loop is not entered anymore, the mixture density is updated.

25.3 Momentum exchange between the phases
25.3.1 Drag

The solver twoPhaseEulerFoam offers a number of drag models. In the sources of twoPhaseEulerFoam there
are this models

o Ergun

o Gibilaro

¢ GidaspowErgunWenYu

¢ GidaspowSchillerNaumann
e SchillerNaumann

¢ SyamlalOBrien

e WenYu

The equations behind this models can be found in [17] or [49].

Drag is considered in the governing equations by the use of the so-called drag-function K. This drag-function
is either computed directly, or it is computed by the use of the drag coefficient Cy. The drag force is the product
of the drag-function and the relative velocity between the phases U, [17].

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

136

(Start]

Jalse rho = alphal*rhol

corrector loop + alpha2*rho2

%{ End

true

A

t .
rue solve continuity

fa,lse

alpha2 = scalar(1)
- alphal

Figure 47: Flow chart of the operations in alphaEqn.H

Schiller-Naumann drag

We use the Schiller-Naumann drag model as an expample to demonstrate how OpenFOAM calculates the drag

force. This drag model utilizes a drag coefficient that is a function of the Reynolds number.

24 . 3
c,—) e (14 0.15Re0-087) Tf Re <1000
0.44 if Re > 1000
U,

3
K =-Cypp—
1 Cars g

(55)

(56)

The drag coefficient is dimensionless, whereas the product of the drag-function K and the relative velocity

has the dimension of a force density.

[K]:[Cd]'[pB]-[fA]zl.E.glf kg

m3 sm md3s
k k 1 N
Koouo ke m _kem 1

m3s s s2 m3 m3

Listing 180 shows, how the drag-function is computed by the Schiller-Naumann drag model.

Foam::tmp<Foam::volScalarField> Foam::SchillerNaumann::K
(
const volScalarField& Ur
) const
{
volScalarField Re(max(Ur*phasea_.d()/phaseb_.nu(), scalar(1.0e-3)));

volScalarField Cds
(

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

neg(Re - 1000) *(24.0%(1.0 + 0.15*xpow(Re, 0.687))/Re)
+ pos(Re - 1000) *0.44
)

return 0.75*Cds*phaseb_.rho()*Ur/phasea_.d();
}

Listing 180: Calculation of the drag-function in the file SchillerNaumann.H

The drag force contributes to the momentum balance. Probably for numerical reasons, one part of the drag
is considered in the momentum equation and the other part is considered in the pressure equation.

25.3.2 Lift

The lift model of twoPhaseEulerFoam is described in [42]. The lift model computes the lift force on a rigid
sphere in shear flow. The force density is calculated from the relative velocity between the phases and the
vorticity of the mixture.

F
L = CLpe|U, x (V x U (57)
|%:]
mit
U, =U, - Ug
U.,=aUs+ (1 —a)Upg
=B

pe =apa+ Bpp

The lift force is computed in the file 1iftDragCoeffs.H. The vector field 1iftCoeff contains the lift force
density.

volVectorField liftCoeff (Cl*(beta*rhob + alpha*rhoa)*(Ur ~ fvc::curl(U)));

Listing 181: Berechnung Auftriebskraft; liftDragCoeffs. H

The dimensions of the field 1iftCoeff is the dimension of a force density.

UiftCocff] = [Co] - [pd - [U, x (Vx U] =1+ 5 mlm _fem 1 N

m3 sms 52 m3 m3
25.3.3 Virtual mass

The virtual mass — an accelerating bubble needs not only to accelerate its own mass, it also needs to accelerate
some of the displaced fluid — is considered in the momentum equation.

(58)

DpU DU
MA,VM:B/;]iCVM(B=B _—4 A)

Dt Dt

In the source code, the momentum exchange term due to virtual mass is split into two parts. One part is
included in the rhs of the momentum equation, the other is considered in the lhs. This seperation is probably
for numerical reasons.

UaEqn =
(
(scalar (1) + Cvm*rhob*beta/rhoa)*
(
fvm::ddt (Ua)
+ fvm::div(phia, Ua, "div(phia,Ua)")
- fvm::Sp(fvc::div(phia), Ua)
)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 138

+ /* other terms x/

/* other terms */

- beta/rhoa*(liftCoeff - Cvm*rhob*DDtUb)
);

Listing 182: Terms including virtual mass in the file UEqns.H

25.4 Kinetic Theory

For the simulation of dense gas-solid particulate flows the particulate phase can be modelled using the kinetic
theory model.

26 twoPhaseFEulerFoam-2.3
This section is valid for OpenFOAM-2.3.

With the release of OpenFOAM-2.3 the two-phase Eulerian solver twoPhaseFulerFoam has seen some major
changes. See the release notes for further details: http://www.openfoam.org/version2.3.0/multiphase.php.

26.1 Physics

The most important change in twoPhaseEulerFoam from version < 2.2.x to 2.3 is that the solver is based on
a completely different set of physical models. In version 2.3 phases are modelled using OpenFOAMs thermo-
physical models. The phases are considered compressible, therefore all simplifications when considering a phase
incompressible do not hold anymore.

26.1.1 Pressure

In twoPhaseEulerFoam-2.3 the pressure is now a real physical pressure. In an incompressible simulation the
absolute value of the pressure has no meaning, only pressure differences count. In a compressible model, the
absolute value of the pressure has an effect, e.g. when using the isothermalDiameter diameter model to
determine the diameter of the dispersed phase elements.

Thus, when migrating a simulation case from OpenFOAM-2.2 or lower to 2.3, check the pressure initial
condition and the boundary conditions.

26.1.2 Temperature

As the new version of the solver uses thermo-physical models for the phases, the user is required to specify not
only the thermo-physical properties of the phases, the user also has to provide initial and boundary conditions
for the temperature of both phases. Thus, two additional fields are present — or need to be present — in the
time directories, e.g. T.air and T.water.

26.2 Naming scheme

The overhaul of twoPhaseFulerFoam in version 2.3 aims for reuseability and generality of the solver code itself
as well as of the case data. A general distinction of data concerning a single phase and data concerning the
whole simulation case can be made.

Case data is named as usual (e.g. fvSchemes, controlDict, g, etc.). Data related to a specific phase is
now stored in files with a filename that consists of two parts. The naming scheme follows the well known
FILENAME.EXTENSION naming scheme. In this case FILENAME denotes the type of information and EXTENSION
denotes the phase itself. This naming scheme is much more general than other naming schemes that are/were
used in OpenFOAM (cf. U1, U2 vs. Uwater, Uair vs. U.air, U.water).

Listing 183 shows the contents of the 0 and constant folders of the bubble column tutorial case. There
we see the FILENAME . EXTENSION naming scheme applied. As each phase has a velocity and a temperature, we
see two files for velocity and temperature. The volume fraction is an exception, as there are only two phase
considered, the volume fraction of water is easily calculated, i.e. alpha.water = 1.0 - alpha.air. As the
pressure is share by all phases, the pressure file has no file-extension. In the constant folder there is also data

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

139

http://www.openfoam.org/version2.3.0/multiphase.php

that applies to one phase and data that applies to the simulation case. The files g and phaseProperties have
no extensions because they contain no information specific to one phase. The thermophysical properties of the
phases air and water are stored in the appropiate files.

The naming scheme that was introduced with twoPhaseEulerFoam-2.3 is fit to create a material data library.
The was the phases or the phase data is organized within the solver is now independent of the way the phase
data is organized within the case.

user@host :~/0penFOAM/OpenF0AM-2.3.x/tutorials/multiphase/twoPhaseEulerFoam/RAS/bubbleColumn$
1s 0 -1

alpha.air

alpha.air.org

epsilon.air

epsilon.water

k.air

k.water

nut.air

nut .water

P

T.air

Theta

T.water

U.air

U.water

user@host :~/0penFOAM/OpenF0AM-2.3.x/tutorials/multiphase/twoPhaseEulerFoam/RAS/bubbleColumn$
1ls constant -1

g

phaseProperties

polyMesh

thermophysicalProperties.air

thermophysicalProperties.water

turbulenceProperties.air

turbulenceProperties.water

Listing 183: Content of the 0 and constant folders of the bubble column tutorial case of twoPhaseEulerFoam
in OpenFOAM-2.3.x

26.3 Solver capabilities
Not only the naming scheme is more general in version 2.3, also the solver itself is more generalized.

Compressibility all phases are treated as compressible. In the file thermophysicalProperties the behaviour
of a phase can be specified.

Energy equation twoPhaseFulerFoam solves an energy equation for all phases. This can not be turned off.

Phase interaction has been extended. A great number of models specific for gas-liquid systems have been
included.

Turbulence Turbulence is treated in a more general way. A number of turbulence models can be used in
contrast to earlier versions of twoPhaseFulerFoam that had kEpsilon hard-coded.

26.4 Turbulence models

twoPhaseEulerFoam-2.3 uses a whole new class of turbulence models. As the governing equations of twoPhaseFEuler-
Foam — namely the momentum equation — aren’t phase intensive anymore, also the governing equations of the
turbulence model are formulated in their general multi-phase form™.

This limits the choice of turbulence models to a small number of multi-phase turbulence models. Listings

184 and 185 show the list of available turbulence models at the time of writing (May 2014).

Valid RASModel types:

6

"http://www.openfoam.org/version2.3.0/multiphase.php

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

140

http://www.openfoam.org/version2.3.0/multiphase.php

R N I N

= e
v o= O

13

(

LaheyKEpsilon
continuousGasKEpsilon
kEpsilon
kineticTheory
mixtureKEpsilon
phasePressure

)

Listing 184: Valid RAS turbulence models of twoPhaseFEulerFoam.

Valid LESModel types:

5

(

NicenoKEqn
Smagorinsky
SmagorinskyZhang
continuousGasKEqn
kEqn

)

Listing 185: Valid LES turbulence models of twoPhaseFEulerFoam.

26.4.1 Naming scheme

One feature of the multi-phase turbulence model framework is that the additional turbulent viscosity is now
named nut, regardless of whether a RAS or an LES model is used. This is possible, since both additional
viscosities stem from the application of the Boussinesqg-hypothesis.

In single-phase simulations an LES turbulence model works with the field nuSgs, whereas a RAS model uses
nut. See textbooks on CFD for the theory behind RAS and LES turbulence models and the origin and meaning
of v, and vgg, [25]. Sections 44 and 45 cover the incompressible k — ¢ model respectively some basics on LES
turbulence models.

26.4.2 kEpsilon

Listing 186 shows the governing equations of the compressible multi-phase formulation of the £ — ¢ model. The
governing equations are largely equivalent to the compressible formulation of the single-phase k — € model. The
formulation deviates from the compressible single-phase formulation in two aspects. First, the convective term
is corrected with the continuity error, see Lines 5 and 18. Furthermore, there is an additional source term on
the RHS, see Lines 11 and 24.

tmp<fvScalarMatrix> epsEqn
(
fvm::ddt (alpha, rho, epsilon_)
+ fvm::div(alphaRhoPhi, epsilon_)
- fvm::Sp(fvc::ddt (alpha, rho) + fvc::div(alphaRhoPhi), epsilon_)
- fvm::laplacian(alpha*rho*DepsilonEff (), epsilon_)

Ci_xalpha*rho*G*epsilon_/k_
- fvm::SuSp(((2.0/3.0)*C1_ + C3_)*alpha*rhoxdivU, epsilon_)
- fvm::Sp(C2_xalpha*rhoxepsilon_/k_, epsilon_)
+ epsilonSource ()

);

tmp<fvScalarMatrix> kEqn
(
fvm::ddt (alpha, rho, k_)
+ fvm::div(alphaRhoPhi, k_)
- fvm::Sp(fvc::ddt (alpha, rho) + fvc::div(alphaRhoPhi), k_)
- fvm::laplacian(alpha*rho*DkEff (), k_)

alpha*rho*G
- fvm::SuSp((2.0/3.0) *alpha*xrhoxdivU, k_)
- fvm::Sp(alpha*rho*epsilon_/k_, k_)
+ kSource ()

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 141

25

I T N

© 0 N U oA W N e

e e e
AW N = O

-
13

N

© o N o «u

Listing 186: Governing equations of the kEpsilon turbulence model.

26.4.3 LaheyKEpsilon

The LaheyKEpsilon turbulence model is a derivation of the standard kEpsilon turbulence model, see Listing
187. The LaheyKEpsilon turbulence model is an extension of the standard k — e model to account for the effect
of the dispersed phase on the turbulence of the continuous phase. This effect is referred to as bubble induced
turbulence (BIT).

There are essentially two ways to account for BIT. One follows the idea of Sato and Sekoguchi [43], there
an additional viscosity models the effect of the increased turbulence caused by the wakes of the bubbles. The
other approach is based on the work of Pfleger and Becker [40]. They included additional source terms in the
transport equations for & and e.

The Lahey model uses with its standard coefficients both approaches.

template<class BasicTurbulenceModel >
class LaheyKEpsilon

public kEpsilon<BasicTurbulenceModel>

/* class definition x*/

Listing 187: The first lines of the LaheyKEpsilon turbulence model definition.

Pitfall: the other phase

When using the LaheyKEpsilon model for one phase phase, the other phase is not allowed to be modelled
as laminar. Listing 188 shows the method phaseTransferCoefficient() of the LaheyKEpsilon turbulence
model. In Line 13 of Listing 188 we find the function call gasTurbulence.k() in the denominator. If laminar
is chosen as turbulence model for the other phase, then the method k() of the laminar turbulence model is
called. Listing 189 shows the definition of this method. We easily see, that the zero return value will cause
problems in the phaseTransferCoeff () method of the LaheyKEpsilon turbulence model.

template<class BasicTurbulenceModel >
tmp<volScalarField>
LaheyKEpsilon<BasicTurbulenceModel >::phaseTransferCoeff () const

{
const volVectorField& U = this->U_;
const alphaField& alpha = this->alpha_;
const rhoField& rho = this->rho_;
const turbulenceModel& gasTurbulence = this->gasTurbulence();
return
(
max (alphalnversion_ - alpha, scalar (0))
*rho
*min (gasTurbulence.epsilon()/gasTurbulence.k(), 1.0/U.time () .deltaT())
)
}

Listing 188: The method phaseTransferCoeff () of the LaheyKEpsilon turbulence model.

template<class BasicTurbulenceModel >
Foam::tmp<Foam::volScalarField>
Foam::laminar<BasicTurbulenceModel >::k() const

{
return tmp<volScalarField>
(
new volScalarField
(
I0object
(
v This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 142

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

11
12
13
14
15
16
17
18
19
20
21

IO0object::groupName ("k", this->U_.group()),
this->runTime_.timeName (),
this->mesh_,
IOobject ::NO_READ,
I0object::NO_WRITE
),
this->mesh_,
dimensionedScalar("k", sqr(this->U_.dimensions()), 0.0)

Listing 189: The method k() of the laminar turbulence model.

Pitfall: the dispersed phase

It is not possible to assign the LaheyKEpsilon turbulence model to the dispersed phase, either to the dispersed
phase alone or to both phases. In any case the attempt to do so results in a segmentation fault when first using
the turbulence model at the initialisation of the simulation case. The reason for this is not entirely known to
the author.

26.4.4 mixtureKEpsilon

Usage

The k£ — € model is computed for the mixture, i.e. the transport equations are solved for using the mixture
properties. Thus, the solution variables are named km and epsilonm, see Listing 190.

DILUPBiCG: Solving for epsilonm, Initial residual = 0.0114325, Final residual = 2.79117e-09,
No Iterations 2

DILUPBiCG: Solving for km, Initial residual = 0.0078252, Final residual = 6.13173e-09, No
Iterations 2

Listing 190: Solver output of twoPhaseEulerFoam using the mixtureKEpsilon turbulence model.

In order to use the mixture k — e model, it needs to be specified in both turbulenceProperties files. Listing
191 shows the resulting error message when mixtureKEpsilon is specified for only one of the phases. As the
turbulence model for the mixture applies to both phases, it needs to be specified for both phases.

--> FOAM FATAL ERROR:

lookup of turbulenceProperties.water from objectRegistry region0 successful
but it is not a mixtureKEpsilon, it is a LaheyKEpsilon

From function objectRegistry::lookupObject<Type>(const word&) const
in file /home/user/OpenF0AM/OpenF0AM-2.3.x/src/0OpenFO0AM/1nInclude/objectRegistryTemplates.
C at line 181.

FOAM aborting

Listing 191: Solver output of twoPhaseEulerFoam when the mixtureKEpsilon turbulence model is specified for
only one of the two phases.

Theory

The governing equations of the mixture k—e model can be found in the sources at \$FOAM_SRC/TurbulenceModels/
phaseCompressible/RAS/mixtureKEpsilon and in [9]. The biggest difference between the equations stated in
[9] and the code of mixtureKEpsilon can be found in the Lines 5 and 18 of Listing 192. There, the continuity
equation of the mixture appears on the of the governing equations. This minor difference between the formula-
tion of the equation can be resolved in two steps. First, we take a look on the first two terms of the governing

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 143

© 0 N o U oR W N e

L I T T N N B
Lo S - N R R R R S I CR S

equations in [9] (local derivative and convective term), see Eqns. (59) to (62).

a’”gf’” TV (pmtmen) + - (59)

o 8362" " em%ﬂ +emV o (Pmlm) + pntl © Vem + .. (60)
=0

/’maé%n + Pmlm - Ve +... (62)

In order to derive equations equivalent to the code implemented in OpenFOAM, we begin with Eq. (62) and
use the product rule of differentiation, cf. Eqns. (59) and (60).

Oem
mT o, mUm ° m ce 2
Py + pmUpy, - Ve, + (62)
OPmEm 0pm _)
T €m ot +V o (PrmUmem) —€nV - (pmm) + ... (63)
Opmem) Opm)
5 +V - (pmUmem) — €m <8t +V (pmum)) +... (64)

Eq (64) is now equivalent to the first terms of the e equation of Listing 192. The exact reason why this formu-
lation was chosen is unknown to the author, a probable reason might be a better numerical behaviour.

tmp<fvScalarMatrix> epsEqn
(
fvm::ddt (rhom, epsilonm)
+ fvm::div(phim, epsilonm)
- fvm::Sp(fvc::ddt(rhom) + fvc::div(phim), epsilonm)
- fvm::laplacian(DepsilonEff (rhom*nutm), epsilonm)

Cli_*rhom*Gm*epsilonm/km
- fvm::SuSp(((2.0/3.0)*C1_)*rhom*divUm, epsilonm)
- fvm::Sp(C2_*xrhom*epsilonm/km, epsilonm)
+ epsilonSource ()

tmp<fvScalarMatrix> kmEqn
(
fvm::ddt (rhom, km)
+ fvm::div(phim, km)
- fvm::Sp(fvc::ddt(rhom) + fvc::div(phim), km)
- fvm::laplacian(DKEff (rhom*nutm), km)

rhom*Gm
- fvm::SuSp ((2.0/3.0) *rhom*divUm, km)
- fvm::Sp(rhom*epsilonm/km, km)
+ kSource ()

Listing 192: Governing equations of the mixtureKEpsilon turbulence model.

The basic relations between the turbulent quantities of the mixture and the turbulence quantities of the
individual phases are based on the turbulence response coefficient Cy, which is the ratio between the r.m.s.
values of the velocity fluctuations of the dispersed and the continuous phase [9].

U/
Cy = -4 (65)
U
v This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 144

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

with this coefficient, we can now express the following relations, which we can find in the file mixtureKEpsilon.C

Pm = OcPe + QP4 (66)
2 Pm
= 67
c Qcpe + CtQOéde ()
k. = C%k,y, (68)
kg = C —t%k, (69)
€. = C?e,p, (70)
eg = Cle. (71)
k2
Vi = Cﬂeﬂ (72)
Veeff = Ve + vy (73)
Ve
Vdeff =va+ Cf =1 (74)
Vq

What remains to clarify is how the turbulence response coefficient C; is determined. OpenFOAM imple-
ments the model proposed by Issa [24] and validated by Hill [18] [42, 9]. Furthermore, the turbulence response
coefficient is modified to account for the influence of the dispersed phase’s volume fraction oy, see e.g. [42, 9].

B 3+ 8
o T s ()
2A4L2
p= pcvcRey (76)
!
L
Ret = U]c/ c (77)
c
3/2
L.=C, ke (78)
2
U = ;“ (79)
Ci(ag) =14 (Cpo — 1)e /(@) (80)
flaa) = 1800y — 4.71 - 10%07 + 4.26 - 10%0 (81)

26.4.5 NicenoKEqn LES

The NicenoKEqn turbulence model is an LES model which solves a transport equation for the unresolved
turbulent kinetic energy ksgs. Similar to the model of Lahey, the model of Niceno is able to account for effects
of bubble induced turbulence. This is done through an additional viscosity and/or an additional source term in
the transport equation for the turbulent kinetic energy.

26.4.6 Pitfall: phase inversion

Phase inversion is the situation when the volume fraction of the continuous phase vanishes in some regions. As
almost all terms of the governing equations are weighted with the volume fraction alpha, a vanishing volume
fraction can lead to serious numerical problems.

The following example demonstrates the problems which may be faced when dealing with phase inversion.
An air-water bubble column is modelled including some of the air above the water surface. Figure 48 shows the
air volume fraction within the bubble column.

When mixtureKEpsilon is selected as turbulence model, the volume fraction is not included in the governing
equation, so phase inversion poses no big problem, see Listing 192 or Eq. (64).

When kEpsilon is selected for the liquid phase, the volume fraction in the governing equations is the volume
fraction of the liquid phase. This volume fraction vanishes above the water surface. Thus, in parts of the domain
the solution of the governing equations faces numerical problems. The governing equations can still be solved in
this case, but preconditioning the resulting matrix equation fails. Preconditioning is a step that is intended to
improve the iterative solution of the resulting matrix equation. In the case of the kEpsilon turbulence model

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

145

for the liquid phase, the only way to avoid crashing the simulation is to use a -solver with no preconditioning.
The -solver and the smooth solver fail completely.

alpha.air

Figure 48: Air volume fraction of the bubble column. Initial field (left) and solution at ¢ = 10s (right).

26.5 Energy equation

In OpenFOAM-2.3 the twoPhaseFEulerFoam solver incorporates the functionality of compressible TwoPhase Fuler-
Foam™. Accounting for compressibility necessitates the solution of the energy equation. The solving of the
energy equation requires the specification of additional discretisation schemes and a solver in fvSchemes and
fvSolution. Depending on the simulation parameters the energy equation is solved in terms of the enthalpy h
or internal energy e.

The energy equation is formulated in a generic form in terms of he. The actual decision to solve for h or e
is made at run-time after the thermophysical properties of the two phases have been read.

Besides the internal energy or enthalpy the energy equation involves also the kinetic energy K, which is in
fact a specific kinetic energy. Listing 193 shows how this kinetic energy is computed. This source code translates
into the following mathematical relation.

1
K; = 3 U;|® (82)

Info<< "Creating field kinetic energy K\n" << endl;
volScalarField K1(IOobject::groupName ("K", phasel.name()), 0.5*magSqr(U1));
volScalarField K2(IOobject::groupName ("K", phase2.name()), 0.5*magSqr(U2));

Listing 193: Definition of the kinetic energy field in the file createFields.H of twoPhaseFEulerFoam.

The solution of the energy equation can not be deactivated. Even if thermophysical parameters are chosen
to represent incompressible phases, the energy equation will be solved each time step.

26.5.1 Governing equations

Listing 194 shows the energy equation for one phase. In Line 3 we see the local derivative and the convection
term of the generic internal energy/ enthalpy he. In Line 5 is the local derivative and the convection term of
the specific kinetic energy K.
In the Lines 4 and 6 we see a correction for the continuity error. See Section 42.3 for a detailed discussion.
From Lines 8 to 10 we see the term regarding the mechanical work done. Here we see a conditional expression
depending whether the equation is solved for internal energy or enthalpy. All other terms in the equation are

"Shttp://www.openfoam.org/version2.3.0/multiphase.php

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

146

http://www.openfoam.org/version2.3.0/multiphase.php

© 0w N e U oA W N R

e e
A W N = O

15
16
17
18
19
20
21
22
23

formulated generically. Besides the use of the abstract he, which is internal energy or enthalpy, the use of the
variable Cpv is also a characteristic of this generic formulation. This variable stands for either the heat capacity
at constant pressure or the heat capacity at constant volume.

Lines 12 to 17 contain the diffusive heat flux. Line 19 represents the heat flux between the two phases. Line
22 contains possible heat sources.

Lines 20 and 21 can be considered a numerical trick. If we ignore the fvm::Sp() for a while and add the
terms of the two lines, we see that they add up to zero. Adding zero is mathematically allowed. If we do
not ignore the fvm: :Sp(), we need to find out, what is happening. fvm::Sp() is an implicit source term, i.e.
the contribution of this term goes into the system matrix of the resulting linear equation system. An implicit
source term not only contributes to the system matrix, these terms go into the diagonal entries of the system
matrix. When solving linear equation systems iteratively, it is preferable to work on a diagonally dominant
system matrix [25]. Exactly, this is achieved by the Lines 20 and 21. The term in Line 21 adds to the diagonal
of the system matrix, whereas the term of Line 20 adds to the right hand side of the ensuing linear equa-
tion system. As both sides of the equation have been equally treated, nothing was done wrong mathematically.
However, as diagonal dominance is numerically a good thing, the convergence behaviour was probably improved.

fvScalarMatrix helEqn

(

fvm::ddt (alphal, rhol, hel) + fvm::div(alphaRhoPhil, hel)
fvm::Sp(contErrl, hel)

fvc::ddt (alphal, rhol, K1) + fvc::div(alphaRhoPhil, K1)
contErril*Ki1

(

+ 1+

hel.name () == thermol.phasePropertyName("e")
? fvc::ddt(alphal)*p + fvc::div(alphaPhil, p)

-alphalx*dpdt

)

- fvm::laplacian

(
fvc::interpolate (alphal)
*fvc::interpolate (thermol.alphaEff (phasel.turbulence().mut())),
hel

)

heatTransferCoeff*(thermo2.T() - thermol.T())
+ heatTransferCoeff*hel/Cpvl
- fvm::Sp(heatTransferCoeff/Cpvl, hel)
+ fvOptions (alphal, rhol, hel)

Listing 194: Energy equation in the file EEqns.H of twoPhaseFulerFoam.

26.6 Momentum equation

Due to the changes on the modelling side and some restructuring, the momentum equation has a different form
compared to previous versions of this solver.
The most general form of the momentum conservation equation for two-phase flow is as follows”®

% +V - (agpgugug) =V - 74 = ZF‘” + ZKP‘” (u, —uy) (83)
i i
with
Kpgi = —Kgp,i
Koqi =0
26.6.1 Units

Now we shall take a short look on the units of this equation. Each term of the equation has to have the same
unit. We take the local derivative to determine the unit of all terms in this equation.

76The phase ¢ is the considered phase and phase p denotes the other phase.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

© 0 N o U A W N e

T T T e T
B =S 0w N GA ® N = O

ot smds T md 2 (84)
N

[8aqpquq] _lkgm 1 kgm N

We see that all terms of the momentum equation have the unit of a force density. On the RHS of the
momentum equation we have two kinds of source terms.

The first kind of source terms — F; — can be referred to as body forces, e.g. the gravitational force. This is
consistent with our observation, that this terms have the unit of a force density.

.. (85)

m3 m?2s?

[Fi] =

The second kind of source terms — K, ; (1, — u,) — are phase interaction terms. This terms are the product
of a coefficient K, ; with the relative velocity ur = u, — uy. Such a phase interaction term might be due to
drag. Now we determine the unit of the interphase momentum exchange coefficient K, ;.

1 N 1kgm
[Kpg,i (0p —ug)] = 3 smd s (86)
kg
[qu,i] E (87)

26.6.2 Implemented equations

Listing 195 shows one of the momentum conservation equations. On Line 3 we see the local derivative and the
convective term. The origin of the term in Line 4 is explained in 42.3. On Line 5 we see a term stemming from
the MRF approach. On Line 6 is the momentum diffusion.

On the RHS there are a number of force terms. Although, they are named *Force, they are in fact force
density terms. On Line we see a part of the drag force. The force due to gravity and the other part of the drag
are considered in the pressure equation [42].

UlEqn =
(
fvm::ddt (alphal, rhol, U1l) + fvm::div(alphaRhoPhil, U1)
- fvm::Sp(contErrl, U1)
+ mrfZones (alphal*rhol + virtualMassCoeff, U1)
+ phasel.turbulence().divDevRhoReff (U1)

- liftForce
- wallLubricationForce
- turbulentDispersionForce
- virtualMassCoeff
* (
fvm::ddt (U1)
+ fvm::div(phil, U1)
- fvm::Sp(fvc::div(phil), U1)
- DDtU2
)
+ fvOptions (alphal, rhol, U1l)
)
UlEqn.relax () ;
UlEqn += fvm::Sp(dragCoeff, Ul);
fvOptions.constrain(U1Eqn) ;

Listing 195: The code of the momentum conservation equation of phase 1 of twoPhaseFulerFoam in UEquns.H

The interfacial momentum exchange terms are computed prior to the construction of the momentum equa-
tion. Listing 196 shows the relevant lines of the file Ueqns.H. Wee see that the momentum exchange terms are
provided by some methods. We know that the variable f1luid is of the type twoPhaseSystem. Thus, the meth-
ods called to compute the momentum exchange terms are methods of the class twoPhaseSystem, see Section
20.2.1.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 148

S

o o

volScalarField dragCoeff (fluid.dragCoeff ());

volScalarField virtualMassCoeff (fluid.virtualMassCoeff ());

volVectorField liftForce(fluid.liftForce());

volVectorField wallLubricationForce(fluid.wallLubricationForce());
volVectorField turbulentDispersionForce(fluid.turbulentDispersionForce());

Listing 196: The definition of the interfacial momentum exchange force terms of the momentum conservation
equations of twoPhaseFEulerFoam in UEqns.H

26.7 Interfacial interaction
26.7.1 Blending

The interfacial momentum exchange models need to work over the whole range of flow situations. These range
from a; = 0 to a3 = 1. In order to well-posedness of the governing equations special care needs to be taken for
the case of phase inversion.

There are three options for blending available: none, linear and hyperbolic.

// create x

if (model_.valid ())

{
x() += model_->KO*(£f1() - £2(0));
}
if (modellIn2_.valid())
{
x() += modellIn2_->K()*x(1 - f1);
}
if (model2Inil_.valid())
{
x() += model2Inil_->K()*f2;
}

// other code

return Xx;

Listing 197: The application of blending; part of the method K() in BlendedInterfacialModel.C

No Blending

The blending model none, which is defined in the files noBlending.H and noBlending.C, is quite instructive.
This blending model, which is essentially a non-model, returns the blending factors £1 and £2 as it is demanded
by the base class of all blending models.

As there is no blending with the none blending model, the user needs to specify which phase is the contin-
uous phase. In twoPhaseEulerFoam-2.3 there is no implicit assumption on which phase is the dispersed and
which is continuous. Listing 198 shows how the none blending model is selected. There we also see the explicit
specification of the continuous phase.

blending
{
default
{
type none;
continuousPhase water;
}
}
Listing 198: Choosing not to use blending as the blending method
v This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 149

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Now, we have a look on the blending factors returned by the none model. Listing 199 shows the definition of
the methods £1() and £2(). These methods return a newly created temporary scalar field (volScalarField)
that is in turn created from a constant expression.

In the case of £1(), the constant expression is phase2.name() != continuousPhase_ which returns a
boolean value. In the case of £2() the corresonding expression is phasel.name() == continuousPhase_,
which also returns a boolean value. Here, we enter the realm of implicit type conversions™. Implicit type
conversions are part of the language’s standard. Thus, if we look up the working draft of the C++11standard,
we find the following sentence in the section on Integral promotions:

A prvalue of type bool can be converted to a prvalue of type int, with false becoming zero and
true becoming one.

Thus, we find that the blending factors returned by none are of the values zero or one, which is the set of
values we would expect in this case. If the boolean expressions yield the correct factors can be tried out with a
simple pen-and-paper test. Choose a continuous phase (i.e. phase2 is the continuous phase) and evaluate all ex-
pressions (i.e. determine the values of £1 and £2, and apply these values on the expressions found in Listing 197.).

Foam::tmp<Foam::volScalarField> Foam::blendingMethods::noBlending::fl
(
const phaseModel& phasel, const phaseModel& phase2
) const
{
const fvMesh& mesh(phasel.mesh());

return
tmp<volScalarField>
(
new volScalarField
(
I0object(/* arguments removed */),
mesh ,
dimensionedScalar
(
ngn
dimless,
phase2.name () !'= continuousPhase_

)

}
Foam::tmp<Foam::volScalarField> Foam::blendingMethods::noBlending::£f2
(

const phaseModel& phasel, const phaseModel& phase2
) const
{

const fvMesh& mesh(phasel.mesh());

return
tmp<volScalarField>
(
new volScalarField
(
I0object(/* arguments removed */),
mesh,
dimensionedScalar
(
ngn
dimless,
phasel.name () == continuousPhase_

)
}

Listing 199: Computing the blending factors. The arguments of the constructor of the I0object class have
been removed to save space.

"7See e.g. http://en.cppreference.com/w/cpp/language/implicit_cast

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 150

\Y

http://en.cppreference.com/w/cpp/language/implicit_cast

Linear

As we saw from the none model, the blending factors £1 and £2 have two extreme values, i.e. zero and one.
The model name linear suggests that this models yields a linear variation between these two limiting values.

The linear blending model was two model parameters, shown in Listing 200. These represent the limits up
to which a phase can be considered to be fully dispersed, i.e. a clear distinction between dispersed phase and
continuous phase is possible. The second parameter is the limit up to which the phases can be considered partly
dispersed. These two limits are necessary, as the solver is intended to handle phase inversion, i.e. situations in
which one phase is the dispersed phase in only parts of the domain.

The definition of the blending factor £1 is shown in Listing 201. We limit the discussion on f1, as the other
blending factor is defined analogously. The interested reader is encouraged to analyse £2. The code of Listing
201 can be translated into equation (88).

1 if @ < maxFullyDispersedAlpha
_ o — maxFullyDispersedAlpha : .
fl (a) - maxPartlyDispersedAlpha—maxFullyDispersedAlpha if o S maXPartlyDlspersedAlpha (88)
0 if @ > maxPartlyDispersedAlpha

//- Maximum fraction of phases which can be considered fully dispersed
HashTable<dimensionedScalar, word, word::hash>
maxFullyDispersedAlpha_;

//- Maximum fraction of phases which can be considered partly dispersed
HashTable<dimensionedScalar, word, word::hash>
maxPartlyDispersedAlpha_;

Listing 200: Model parameters of the 1inear blending model; declaration in the file 1inear.H

Foam::tmp<Foam::volScalarField> Foam::blendingMethods::linear::f1l
(
const phaseModel& phasel, const phaseModel& phase2
) const
{
const dimensionedScalar
maxFullAlpha(maxFullyDispersedAlpha_[phasel.name()]);
const dimensionedScalar
maxPartAlpha(maxPartlyDispersedAlpha_[phasel.name()]);

return
min
(

max

(phasel - maxFullAlpha)
/(maxPartAlpha - maxFullAlpha + SMALL),
scalar (0.0)
),
scalar (1.0)

Listing 201: Computing the linear blending factor £1 in the file linear.C

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

a
0.2 0.4 0.6 0.8 1.0

Figure 49: The value of £1 over «; model parameters are set to maxFullAlpha = 0.3 and maxPartAlpha = 0.5;
these settings are taken from the bubble column tutorial case of twoPhaseEulerFoam.

Hyperbolic

The hyperbolic blending model offers a continuous function for the blending factor for the whole range of the
dispersed phase’s volume fraction, see Figure 50. Again, we analyse only the definition of f1 and leave the
reader the opportunity to follow the argument made, with the definition of £2.

The hyperbolic blending model needs in total three model parameters. The parameter transitionAlphaScale
controls how steep the transition between 0 and 1 is. The other two parameters are maxDispersedAlpha for
each phase. At this parameter the blending function (89) has the value 1/2.

1 4(av — maxDispersed Alpha
= =1+ tanh 89
file) 2(+tan (transitionAlphaScale (89)
fi
1.0
0.8
0.6
0.4
0.2
0.2 0.4 0.6 0.8 1.0 “
Figure 50: The value of f1 over «; model parameters are set to maxDispersedAlpha = 0.6 and

transitionAlphaScale = 0.4;

26.8 Interfacial momentum exchange
26.8.1 Drag
Units

From viewing the governing equations we saw, that the drag term consists of a coeflicient and the relative
velocity between the phases.

Farag = Kpgdrag (Up — 1) (90)

We find the same structure in the terms of the implemented equations. The Listing below shows one part
of the drag term — as the drag term consists of the coefficient and a velocity difference, we can split the term
up into two contributing parts.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 152

N T N

© 0 N e A W N =

UlEqn += fvm::Sp(dragCoeff, Ul);

As we know from our considerations about the units of the terms of the momentum equation, the drag force
contribution in general needs to have the unit of a force density. Thus, we determined the unit of the coefficient,
see Eqn. (87).

1 kg
dragCoeff| = —/— 91
(aragCoefs] £ £ (91)
By having a close look on the base class for the drag models, we can check the unit of the coefficient. The
base class of the drag model has a static data member that carries the information about the unit of the provided
coefficient. In fact, all interfacial momentum exchange models have such a member. In the header file of the
base class for the drag models, a constant static member”® dimK is declared.

//- Coefficient dimensions
static const dimensionSet dimK;

In the implementation file, the static data member is initialised to the appropriate value. In Section 6 we
reviewed OpenFOAMs feature to provide physical units. There we can see, that the order of units in a
dimensionSet is [kg msKmol].

const Foam::dimensionSet Foam::dragModel::dimK(1, -3, -1, 0, 0);

Thus, we see, that the drag force coefficient has indeed the unit we derived from our earlier considerations.

Returning the output

Other than the drag models of prior versions of twoPhaseEulerFoam (version 2.2 and below), the drag models in
twoPhaseFEulerFoam-2.3 return the product of drag coefficient Cp and the Reynolds number Re. Consequently,
the method returning the output of the individual drag models is named CdRe ().

The drag model itself, i.e. the base class returns the drag force coefficient K. This drag force coefficient is
provided by the method K() which is a method of the base class dragModel. The base class also has a pure
virtual method named CdRe (). Pure virtual means that derived classes need to implement this method and that
we are unable to create an instance of the base class itself. We only can create instances of one of the derived
classes. As a derived class must implement all pure virtual methods, we are guaranteed that these methods
actually exist. The Listings 202 and 203 show the relevant parts of code of the class dragModel. The method
K() calls the method CdRe (), see Line 5 of Listing 203.

//- Drag coefficient
virtual tmp<volScalarField> CdRe() const = 0;

//- The drag function K used in the momentum equation
// ddt (alphal*rhol1*U1) + ... = ... Kx(U1-U2)

// ddt (alpha2*rho2*U2) + ... = ... Kx(U2-U1)
virtual tmp<volScalarField> K() const;

Listing 202: The declaration of the methods K() and CdRe () in dragModel.H

Foam::tmp<Foam::volScalarField> Foam::dragModel::K() const
{
return
0.75

*CdRe ()

*max (pair_.dispersed (), residualAlpha_)

*swarmCorrection_->Cs ()

*pair_.continuous () .rho ()

*pair_.continuous () .nu()

78 A static data member of a class exists only once for all instances of this class, i.e. regardless of how many actual objects of this
class exist, the data member exists only once. This makes perfect sense for common properties such as the unit of the coefficient,
which is the same for all drag models.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

153

10
11

S I N

o N o o

/sqr (pair_.dispersed().d());

Listing 203: The definition of the method K() in dragModel.C

If we translate Listing 203 into math we yield

3
K = —-CpReaCs pc;/() (92)
4 dz
Now, we insert the definition of the bubble Reynolds number
3 dB UR pclVc
K=2
4CD Ve aC’s dQB (93)
3
K = 2aCsCpLUp (94)
4 dp
If we now take a look on the units
pc kg 1m kg
K= |"=Ur|=—F5—-—=—3- 95
[K] {dB R] m3m s m3s (95)

Again, we find the proper physical unit for the drag force coefficient.
Here we show the definition of the method CdRe () from the class SchillerNaumann as an example since the
Schiller Naumann drag model is well known.

Foam::tmp<Foam::volScalarField> Foam::dragModels::SchillerNaumann::CdRe () const

{
volScalarField Re(pair_.Re());

return
neg(Re - 1000)*24.0%(1.0 + 0.15xpow(Re, 0.687))
+ pos(Re - 1000) *0.44*max (Re, residualRe_);

Listing 204: The relevant lines of code in SchillerNaumann.C

Swarm correction

The drag models offer swarm correction of the drag force, since it is observed that swarms of bubbles behave
different from single bubbles. At the time of writing (September 2014) there are two choices.

noSwarm This model simply returns unity when swarmCorrection_->Cs() is called.
TomiyamaSwarm This model computes the swarm correction factor according to [48].

The Tomiyama swarm correction factor depends on the bubble volume fraction o and a model parameter [.

CS,Tomiyama = (1 - a)372l (96)

Both swarm correction models are derived from an abstract base class swarmCorrection. Thus the frame-
work is ready for future extension of model choice.

26.8.2 Lift

The lift force on a dispersed phase element (DPE) is defined as

FL = CLOzpC (UR X (V X U)) (97)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 154

AW N =

o

© o N e U oA W N R

o
o

with

CL lift force coefficient
«@ volume fraction of the dispersed phase
pC density of the continuous phase
Ugr relative velocity between the phases
U mixture velocity

Units

In contrast to the drag model, the lift model provides the actual force term for the governing equations. The
base class of the lift models declares a static consant data member dimF for storing the unit of the force term
computed by the list model.

//- Force dimensions
static const dimensionSet dimF;

In the implementation file 1iftModel.C the static data member is initialized and it has indeed the unit of
a force density. Note: the order of units in a dimensionSet is [kgmsKmol].

N _ kg (85)

m3 m?2s?

Fi] =

const Foam::dimensionSet Foam::liftModel::dimF(1, -2, -2, 0, 0);

Returning the output

The general computation of the lift force is done — similar to the drag models — within the method F() of the
base class. The base class calls the method C1() of the concrete lift model for the lift force coefficient. This is
similar to the method K() of the drag model base class calling the method CdRe () of the concrete drag model
classes.

The method F() of the base class returns the force density field due to the lift force.

//- Lift coefficient
virtual tmp<volScalarField> Cl() const = 0;

//- Lift force
virtual tmp<volVectorField> F() const;

Listing 205: The declaration of the methods F() and C1() in liftModel.H

Foam::tmp<Foam::volVectorField> Foam::1liftModel::F() const

{
return
c10)
*pair_.dispersed ()
*pair_.continuous () .rho ()
* (
pair_.Ur() ~ fvc::curl(pair_.continuous().U(Q))
)
}

Listing 206: The definition of the method F() in 1iftModel.H

The actual lift force coefficient is provided by the concrete lift force model. Again, analogue to the drag
model classes, the base class for the lift models declares the pure virtual method C1(). This means, every lift
model derived from the base class has to implement C1() and we are not able to create an instance of the base
class itself. Thus, the existance of the method C1() is guaranteed. The implementation of C1() is the remaining
degree of freedom for the individual lift force models.

There are several choices available to the user:

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 155

noLift this model returns a zero field when either F() or C1() is called. This class overwrites the method
F() which is inherited from the base class with its own implementation. Thus, when F() is called,
the implementation of the class noLift is called, i.e. noLift::F(). All other lift force models do not
implement F(), thus, 1iftModel: :F() is called.

constantCoefficient this model is the easiest implementation of a lift force model. The constant lift force coef-
ficient C, is provided by the user. C1() simply returns this value in the form of the appropriate data type,
i.e. the coefficient provided by the user is a dimensionless number (declared as const dimensionedScalar Cl_;),
however, the method C1() returns a volScalarField.

lift force model X there are several models available that compute the lift force coefficient from flow proper-
ties.
26.8.3 Virtual mass

The class structure for the virtual mass models follow the example of the drag and lift models. There is an
abstract base class providing a method F() for the force term Fy p; due to virtual mass. The force term due to
virtual mass if defined as

Fya = Cymape (98)
with
Cvm virtual mass coefficient
e volume fraction of the dispersed phase
pc density of the continuous phase

The derived classes provide the virtual mass coefficient Cy 5, via the method Cvm(). The user has the choice
between:

noVirtualMass this class returns zero when F() is called. This model overwrites the method F() with its
own implementation returning a zero field. All other classes make use of the base classes implementation
of F() which all derived classes inherited. The method Cvm() also returns a zero field.

Foam::tmp<Foam::volScalarField>
Foam::virtualMassModels::noVirtualMass::K() const
{

return Cvm()*dimensionedScalar("zero", dimDensity, 0);

}

constantVirtualMassCoefficient this class computes the contribution due to virtual mass based on a con-
stant virtual mass coefficient Cy p; which is provided by the user.

Lamb this model computes the virtual mass coefficient Cy s depending on the aspect ratio of the dispersed
phase elements. With the help of aspect ratio models a particle shape different from spheres and even
shape variation can be modelled within some limits.

26.8.4 Aspect ratio models

When dealing with non-spherical bubbles or particles, the shape has to be considered in the interfacial momen-
tum exchange models. One way of dealing with this situation is to formulate those models to incorporate the
aspect ratio of the dispersed phase elements.

Here, the aspect ratio models come into play. These compute the aspect ratio of the dispersed phase elements
depending on material and possibly flow properties. However, the influence of shape can also be considered
using other approaches.

The aspect ratio is used in the TomiyamaAnalytic drag model and the Lamb virtual mass model. The inter-
ested reader can find this out by invoking the following commands.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 156

cd $FOAM_APP/solvers/multiphase/twoPhaseEulerFoam/interfacialModels
find -name *.C | xargs grep ’pair_.E()’

The second command is a combination of a find command and a grep command. find finds all files with the
file extension .C and grep searches this files for the pattern pair_.E(). This pattern is the function call which
returns the aspect ratio E of a phase pair.

26.8.5 Wall lubrication

The wall lubrication force pushes bubbles away from the walls. The class structure is similar to the aforemen-
tioned models. There is an abstract base class and derived classes implementing a specific model. The base
class declares the pure virtual method F() which returns the force term due to wall lubrication. The derived
class have to implement this method.

There is a derived class named noWallLubrication which simply implements the method F() in way to
return a zero field. There are also three models computing the wall lubrication force.

26.8.6 Turbulent dispersion

Turbulent dispersion describes the effect of turbulent motion of the liquid phase on the gas phase. The models
are also derived from an abstract base class. There is a class named noTurbulentDispersion which returns a
zero field for the force term and there are a number of classes implementing individual models. The base class
declares the method F() as a pure virtual method. This means there is no generic formulation as in the case of
the drag or lift models.

constantTurbulentDispersionCoefficient

The constant coefficient model implements the following model for the force due to turbulent dispersion.

Frp = CrpapckcVa (99)
with
Crp turbulent dispersion coefficient
« volume fraction of the dispersed phase
pc density of the continuous phase
ke kinetic turbulent energy of the continuous phase
Burns

The Burns model implements the following model for the force due to turbulent dispersion.

v @
Frp = Kprag—-Va (1 +) (100)
o 11—«
with
Kprag drag force coefficient due to drag
« volume fraction of the dispersed phase
Ve turbulent viscosity of the continuous phase

o surface tension

Note that K444 is not evaluated by calling method K() of the class dragModel. Listing 207 shows the actual
code that computes the force term of the Burns model.

The reason for computing the drag force coefficient K “by hand” rather than calling dragModel: :K() might
be the run-time. By not calling K() we can save one virtual function call”®. The operations to compute K have
to be done anyway, so there is a net saving of one virtual function call.

79Virtual function calls are considered to be more expensive in terms of run-time than direct function calls, since the correct
function to call has to determined at run-time [15].

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

v Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Foam::tmp<Foam::volVectorField>
Foam::turbulentDispersionModels::Burns::F() const
{
const fvMesh& mesh(pair_.phasel().mesh());
const draglModelé&
drag
(
mesh.lookupObject <dragModel >
(
I0object::groupName (dragModel::typeName, pair_.name())
)
)

return
- 0.75
*drag.CdRe ()
*pair_.dispersed ()
*pair_.continuous () .nu()
*pair_.continuous () .turbulence () .nut ()
/(
sigma_
*sqr (pair_.dispersed () .d())
)
*pair_.continuous () .rho ()
*fvc::grad(pair_.continuous ())
*(1.0 + pair_.dispersed()/max(pair_.continuous(), residualAlpha_));

Listing 207: The definition of the method F() in the file Burns.C

Gosman

The Gosman model implements the following model for the force due to turbulent dispersion.

Yt ya (101)
(o

FTD = KDrag

26.9 MRF method - avoiding errors

The MRF method can be used to simulate stirred vessels. By the time of writing, this is the only way to do
so with the Eulerian multiphase solvers, since none of the Eulerian solvers has dynamic mesh capabiltiy. The
basics behind the MRF method are discussed in Section 48.

26.9.1 Inlet boundaries and MRF zones

The MRF method corrects the velocities at the boundaries within the MRF zone. Thus, if a gas inlet BC is
placed within the MRF zone, the simulation takes an unintended route. In Figure 51 we see the outcome of a
gas inlet boundary placed within an MRF zone. Note, the tangential alignment of the velocity vectors on the
right image. The initial inlet definition (visible on the left image) is overridden by the MRF’s constraint.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 158

Figure 51: Velocity vectors of the gaseous phase at the inlet boundary (red vectors) in an aerated stirred tank.
That the gas inlet boundary lies within the MRF zone. On the left, we see the initial condition and on the right
we see the boundary condition after the constraints by the MRF method have been applied.

27 multiphaseFEulerFoam

multiphaseFulerFoam is an Eulerian solver for n phases. This solver differs in some points from the solver
twoPhaseEulerFoam.

27.1 Fields

The naming scheme of the fields differs from other multiphase solvers. multiphaseEulerFoam directly uses names
(e.g. Uair, Uwater, Uoil, etc.).

27.1.1 alphas

A specialty of multiphaseEulerFoam is the field alphas. This field does not represent the volume fraction of
a certain phase and is therefore not bounded by 0 and 1. This field is used to represent all phases in a single
scalar field. alphas is computed by summing up the products of phase index and phase fraction.

n—1

alphas = Z i* oy (102)
i=0

Because alphas is computed quantity, the file alphas can be missing in the 0-directory.

27.2 Momentum exchange

The parameters for the momentum exchange, e.g. the drag model, need to be specified pair-wise.

27.2.1 drag

drag
(
(air water)
{
type blended;

air

{
type SchillerNaumann;
residualPhaseFraction 0;
residualSlip O0;

}

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 159

water

{
type SchillerNaumann;
residualPhaseFraction 0;
residualSlip O;

}

residualPhaseFraction 1e-2;
residualSlip le-2;
}

/* further definitions */

Listing 208: Pair-wise definition of the drag model in the file transportProperties

27.2.2 wirtual mass

The coefficients for considering virtual mass must also be specified pair-wise. Listing 209 shows how the coeffi-
cients for virtual mass are specified in the damBreak tutorial.

virtualMass

(
(air water)
(air oil)
(air mercury)
(water o0il)
(water mercury)
(0il mercury)

O O O O oo
(S0 ¢ 2 B¢ G B¢ ey |

Listing 209: Pair-wise definition of Coefficients for virtual mass in the file transportProperties

27.2.3 lift force
Currently (OpenFOAM 2.1.1) there is no lift model in multiphase EulerFoam.

28 driftFluxFoam

driftFluxFoam is a solver of OpenFOAM to simulate e.g. settling of disperse particles in a liquid. driftFluxFoam

is the successor of settlingFoam, which has been discontinued with the release of OpenFOAM-2.3.1%°. settlingFoam
was used by Brennan [11] in his thesis, which contains a lot of information on deriving the drift flux model from

the Eulerian two-fluid model equations. The header of driftFluxFoam describes this solver as follows:

Solver for 2 incompressible fluids using the mixture approach with the drift-flux approximation for
relative motion of the phases.

Used for simulating the settling of the dispersed phase and other similar separation problems.
driftFluxFoam complys with the generic solver design of OpenFOAM, thus this solver can use all available

turbulence models. It also can use the MRF method and the fuOptions framework.

28.1 Governing equations

The governing equations for the mixture are derived from the two-fluid model [11, 21].

80nttp: //www.openfoam.org/version2.3.1/

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 160

http://www.openfoam.org/version2.3.1/

28.1.1 Mixture continuity equation

The mixture continuity equation can be easily derived by adding the continuity equations of the two phases:

% + V- (aprug) =0 (103)
with the constitutive relations
Pm = Q1p1 + Qopo (104)
Py, = a1piU] + Qopols (105)
we gain
Bg;;n +V: (pmum) =0 (106)

28.1.2 Mixture momentum equation
Derivation from literature

The derivation of the mixture momentum equation is analogous to the derivation of the mixture continuity
equation. Therefore, we skip the general derivation and refer the interested reader to the appropriate liter-
ature [11, 21]. In this section, we want to focus on the derivation of the specific equations implemented in
driftFluxFoam.

We start from the derivation given in the appendix of Brennan [11]:

Opmum

5 TV (Pmmtn) = =Vpn + V- (r +r—y akpkukmukm) + pm8 + My, (107)

we pay special attention to the diffusion stress > aupgUkmUkm, which represents momentum diffusion due to
the relative motion between the phases.

Z Ak PrUmUkm = 101 U01mU1m + Qo p2U2mU2m (108)

For convenience we introduce the symbol 74, for the diffusion stress

Tam = Y Ok Pk Wk W (109)

with ug,,, the velocity of the phase k relative to the mixture’s centre of mass; uy,, is also referred to as diffusion
velocity of the phase k

Upm = U — Upy, (110)
Ishii and Hibiki [21] states a relation between the diffusion velocities of the two phases:
Qa1p1U1y + Q2poUlom =0 (111)

Thus, we can eliminate uy,, from the diffusion stress 74,

2
Tdm = Q101 0202 u%m + agpgugm (112)
a1p1
Tam = agpgugm %22 +1 (113)
a1p1
Qap2 + a1py
Tdm = 042p2u§m <041[21> (1].4)
Tam = anppud, (Lo (115)
" \aip
Q2 P2 o
m = Pm——Us,, 116

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

© 0 N U A W N e

o
S}

© 0 N U oR W N e

e
T N S U S

Implementation

From the source code in Listing 210 we see the diffusion stress an the fourth term on the LHS of the momentum

equation.

fvVectorMatrix UEqn

fvm::ddt (rho, U)
+ fvm::div(rhoPhi, U)
+ MRF.DDt(rho, U)
+ fvc::div(UdmModel.tauDm())
+ turbulence->divDevRhoReff (U)

fvOptions (rho, U)

Listing 210: The momentum equation of driftFluxFoam

Next, we take a look at the implementation of the diffusion stress.

tmp<volSymmTensorField> Foam::relativeVelocityModel::tauDm() const

{
volScalarField betac(alphac_x*rhoc_);
volScalarField betad(alphad_*rhod_);
// Calculate the relative velocity of the continuous phase w.r.t the mean
volVectorField Ucm(betad*Udm_/betac) ;
return tmp<volSymmTensorField>
(
new volSymmTensorField
(
"tauDm",
betad*sqr (Udm_) + betac*sqr(Ucm)
)
)
}
Listing 211: The diffusion stress of driftFluxFoam computed by the relativeVelocityModel
And now, we translate the source code into some math:
Tom = ﬂdugm + Bcuzm (117)
with
Ba = aapa 118)
Be = aepe 119)
Ba
Uem = —Uam (120)
Be
we gain
Ba\®
Tom = ﬁdu?im + ﬁc (5) uim (121)
c
Ba
Tom = BaUg,, (1 + (122)
Be
QqpPd
Tom = QdPdUiy, <1 +) (123)
anC
2 acﬂc*’adpd
Tom = QdPdUg,, | ——— (124)
AePe
p
1@m/::adpdu§"fglﬁf (125)
crc
Qd Pd
Tom = Pm— — Zw1 (126)
c Pc
v This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 162

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

AW N =

o N o

We notice, that (126) derived from the source code, equals (116), derived from literature with phase 2 being
the disperse phase d.

Relative velocity

The diffusion velocity ug,, and the drift velocity ugy; are linked by a constitutive relation:

Uy, = Lludj (127)
Pm
We find this relation also in the source code in Listings 216 and 217. Ishii and Hibiki [21] state, that in the
case of dispersed two-phase flow the drag correlation should be expressed in terms of the drift velocity ug;.
The relative velocity models provide a method that returns ug,,, however, in the source code of the Listings
216 and 217 we find relation (127) translated into C++. There, the expression for ug,, consists of the density
ratio and a relation for the drift velocity, which links the terminal velocity of a single particle and the volume
fraction of the disperse phase.

28.2 incompressibleTwoPhaseInteractingMixture

The class incompressibleTwoPhaseInteractingMixture serves as the transport model for driftFluxFoam.
This class holds all the information of the two phases and provides the mixture quantities. driftFluxFoam
solves the momentum and pressure equations for the mixture. Thus, this solver is in between a single-phase
solver and a full two-fluid solver such as twoPhaseFulerFoam.

Via this transport model, the mixture quantities propagate to the turbulence model, since the turbulence
model receives a transport model class as template parameter at construction. This is one example for the
versatility of the new, templated turbulence modelling framework. The precursor settlingFoam had a hard-
coded k — € turbulence model. Also the viscosity model was kind of hard-coded.

28.3 Mixture viscosity models

Settling equippment is often operated with solids concentrations at which the presence of the solid particles
affect fluid properties. Besides using the mixture density, a mixture viscosity also has to be used.

28.3.1 mixtureViscosityModel

The class mixtureViscosityModel is the abstract base class for the actual viscosity models. This class serves a
similar purpose as the base class for the single-phase viscosity models viscosityModel located in $F0AM_SRC/
transportModels/incompressible/viscosityModels/viscosityModel. These two base classes are rather
similar and there are only slight differences in their implementations.

28.3.2 slurry

The slurry mixture viscosity model is a correction for the Newtonian viscosity with reference to Thomas [47].

1= pe (1 + 2504 + 10.05a7 + 0.00273 ¢'6-0) (128)

The source code computing the mixture viscosity is a direct translation of the math above into C++.

Foam::tmp<Foam::volScalarField>
Foam::mixtureViscosityModels::slurry::mu(const volScalarField& muc) const
{
return
(
muc*x(1.0 + 2.5%xalpha_ + 10.05*sqr (alpha_) + 0.00273xexp(16.6*alpha_))
)5

Listing 212: The calculation of the mixture viscosity by the slurry mixture viscosity model.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 163

© o N e U oA W N R

e e e e
N o U A W N = O

28.3.3 plastic

The plastic viscosity model is based on a generic viscosity model (129) for liquids exhibiting plastic behaviour.

7 =aC’® (129)
The plastic model implemented in driftFluxFoam translates to:
p=min [p. + k* (10" — 1), thmax) (130)

Listing 213 shows the source code computing the mixture viscosity. The -1 in the second term ensures, that
we retain the laminar viscosity of the continuous phase in the case the dispersed volume fraction vanishes, since
anything to the power of zero equals one.

Foam::tmp<Foam::volScalarField>
Foam::mixtureViscosityModels::plastic::mu(const volScalarField& muc) const
{
return min
(
muc
+ plasticViscosityCoeff_
*(
pow
(
scalar (10),
plasticViscosityExponent_x*alpha_
) - scalar (1)
),
muMax_

);

Listing 213: The calculation of the mixture viscosity by the plastic mixture viscosity model.

28.3.4 BinghamPlastic

BinghamPlastic is a Bingham plastic model.

28.4 Relative velocity models - hindered settling

In this section we use the symbol v for the velocity to follow the notation of Brennan [11] as well as the source
code of OpenFOAM.

28.4.1 The base class

The base class holds the data common to the derived models. The base class holds the private field Udm_ for
the diffusion velocity ug,, and declares an abstract method correct (). The method correct () is used by the
derived classes to compute the diffusion velocity Udm_.

The method Udm() of the base class simply returns Udm_, and the method tauDm() returns the diffusion
stress computed from the diffusion velocity.

The diffusion velocity

The class for the relative velocity model holds a vector field for the diffusion velocity. The internal field values
are determined from the actual model in use, however, the boundary conditions are taken over from the mixture
velocity field.

This, we can read from the source code of the base class. In Listing 214 we see the initializer responsible for
the diffusion velocity.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 164

© W N e G A W N =

Udm_

I0object

(
"Udm",
alphac_.time () .timeName (),
alphac_.mesh(),
I0object :: NO_READ,
IOobject:: AUTO_WRITE

),

alphac_.mesh(),

dimensionedVector ("Udm", dimVelocity, vector::zero),

mixture.U() .boundaryField () .types ()

Listing 214: The initializer entry for Udm_ in the constructor of the relativeVelocityModel class.

For the interpretation of Listing 214 we need to dig out the appropriate constructor of the class GeometricField®!.

In Listing 215 we see that the constructor receives five arguments, of which the last has a default value. If we
pass only four arguments, the fifth will be determined from the default value.

//- Constructor given IOobject, mesh, dimensioned<Type> and patch types.
GeometricField
(

const IOobjecté&,

const Meshé&,

const dimensioned<Type>&,

const wordList& wantedPatchTypes,

const wordList& actualPatchTypes = wordList ()

Listing 215: The signature of the constructor called by the code in Listing 214.

If we compare the arguments of the constructor call of Listing 214 and the signature in Listing 215, we see
that the first argument passed is clearly an I0object. The second argument is a reference to the mesh itself,
which is obvious from the call to alphac_.mesh() in Listing 214.

The third argument determines the type of the field as well as the initial value. The template parameter
Type determines whether the field is a scalar, a vector or a tensor field. As a dimensionedVector is passed in
Listing 214, Type evaluates to vector®?.

The fourth argument is a list of patch types, since we passed only one dimensioned value as the third
argument, there has been no information passed on the boundary conditions of the field up to now. By passing
the list of boundary types of the mixture velocity field (mixture.U()), the boundary conditions of the field
Udm_ are specified.

As there is no fifth argument passed in Listing 214, the return value of the call wordList () is used.

28.4.2 simple

The model named simple is similar to the model used by Brennan [11] with attribution to Dahl [12]. This
model is very similar to the Vesilind [51] model (132), Brennan [11] explains the change of the base from the
Euler number e to the base 10 with a closer fit to experimental data gathered by Dahl [12].

vy = v 107k (131)

The implementation of the simple model is more or less a direct translation from math (131) to C++. In
the exponent the maximum of the dispersed volume fraction and zero is taken to avoid numerical trouble from
negative values of the volume fraction. Reversing the sign in an exponent is never a good idea in numerical
simulation.

81Bear in mind, that volVectorField and others are specialisations of the templated class GeometricField.
82Bear in mind, that dimensionedVector is a specialisation of the templated class dimensioned<Type> and dimensionedVector
is a shorthand for dimensioned<vector>

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 165

S

© 0 N o U R W N e

[
S}

void Foam::relativeVelocityModels::simple::correct ()

{
Udm_ = (rhoc_/rho())*VO_xpow(scalar(10), -a_xmax(alphad_, scalar(0)));

}

Listing 216: The calculation of the dispersed diffusion velocity Udm_ by the simple relative velocity model.

28.4.3 general

The model referred to as general is most probably basedon the model of Takécs [46], there is no reference to
any literature in the header file. The Takdcs [46] model (133) is a so-called double-exponential model based on
the model of Vesilind [51], see (132) [19, 11].

vy =vge " (132)

Vs = Vg (efth —e " X) (133)

with
vs settling velocity
vg maximum settling velocity
n model parameter
. P . . (134)
rn settling parameter for hindered settling
rp settling parameter for low solids concentration

X suspended solids concentration

The implementation .

void Foam::relativeVelocityModels::general::correct ()

{
Udm_ =
(rhoc_/rho())
*VO_
* (
exp(-a_x*max (alphad_ - residualAlpha_, scalar (0)))
- exp(-al_xmax(alphad_ - residualAlpha_, scalar(0)))
)
}

Listing 217: The calculation of the dispersed diffusion velocity Udm_ by the general relative velocity model.

28.5 settlingFoam

Here we take a closer look on settlingFoam (of OpenFOAM-2.2.x), which is the predecessor of driftFluxFoam.
By comparing the implementations of these two solvers we can observe the transition of the OpenFOAM source
code base to a more encapsulated approach.

28.5.1 Mixture viscosity

settlingFoam was/is restricted to the plastic or Bingham viscosity models. Listing 218 shows the code of
settlingFoam, which computes the mixture viscosity. This code is located in a source file, which is included
into the body of the PIMPLE loop of the solver.

Thus, for this solver, the treatment of mixture viscosity is not encapsulated. The viscosity models are not
located in separate files and the code of the solver itself contains all the knowledge of the viscosity models.
Extending the solver with one or more mixture viscosity models would entail building an extended if-cascade
within the file correctViscosity.H.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 166

N

© o N o «u

11
12
13
14
15
16
17
18
19
20

/* compute plastic viscosity */

mul = muc +
plasticViscosity
(
/* code removed for brevity */
)
if (BinghamPlastic)
{
volScalarField tauy = yieldStress
(
/* see yieldStress.H */
)
mul =
/* compute contribution of yield stress */
+ mul;
}
mul = min(mul, muMax);

}

Listing 218: The calculation of the mixture viscosity in the file correctViscosity.H of settlingFoam of
OpenFOAM-2.2.x. Comments added by the author.

28.5.2 Relative velocity models

settlingFoam of OpenFOAM-2.2.x offers the same choice of relative velocity models as driftFluxFoam at the
time of writing. However, implementation-wise we note, that model selection is, again, done in an if-statement

cascade.
if (VdjModel == "general")
{
vdj = VO*
(
exp (-a*max (alpha - alphaMin, scalar(0)))
- exp(-al*max(alpha - alphaMin, scalar(0)))
)
}
else if (VdjModel == "simple")
{
Vdj = VO*pow(10.0, -a*alpha);
}
else
{
FatalErrorIn(args.executable ())
<< "Unknown VdjModel : " << VdjModel
<< abort(FatalError);
}

Vdj.correctBoundaryConditions () ;

Listing 219: The calculation of the relative velocity in the file calcVdj.H of settlingFoam of OpenFOAM-2.2.x.

28.5.3 Turbulence

Turbulence in settlingFoam was/is implemented in a similar fashion as in twoPhaseEulerFoam of that time.

Both solvers feature a hard-coded k — € turbulence model, which is adapted to the solvers needs.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Part VI
Postprocessing

There are two principal possibilities for post processing in OpenFOAM. First, there are tools that are executed
after a simulation has finished. This tools work on the written data of the solution. sample and para View are
two examples for such tools.

Besides that, there is run-time post processing. Run-time post processing performs certain operations on the
solution data as it is generated. Consequently, run-time post processing allows for a much finer time resolution.
The functions objects — e.g. for calculating forces or force coefficients — are an example for run-time post
processing. The big disadvantage of this method is, that the user has to know the intended post processing
steps before starting a simulation. See http://www.openfoam.com/features/runtime-postprocessing.php
for more information about run-time post processing.

29 functions

The functions are little programs that are part of OpenFOAM. A function object serves for one specific purpose,
e.g. compute the time average of a field quantity. The function objects enable run-time post processing. At
this point some function objects are explained.

field Average compute the time average of field quantities

forces compute the forces on a body

forceCoeffs compute force coefficients, e.g. for drag, lift and momentum
sampledSet save the field values of a certain region, e.g. along a line
probes save field values at certain points

streamLine compute streamlines

29.1 Definition

function objects are defined in the file controlDict. There, a function dictionary is created which contains all
necessary informations. Listing 220 shows the basic structure of such a definition.

Every function has a name. This name is stated at the place of the NAME placeholder in Listing 220. This
name is also the name of the folder OpenFOAM creates in the case directory. There, all data generated by the
function object is stored.

Each function object also has a type. This type needs to be specified at the place of the TYPE placeholder.
The type needs to be from the list of the available functions. To find out, which functions are available, the
banana-trick®? can be used. Listing 221 shows the error message that is caused by the banana-trick.

The placeholder LIBRARY marks the place where the name of the library needs to entered. A function object
is not a program that is executeable on its own. It is merely a library that is used by other programs. In
our case, the function objects are called by the solvers. Therefore, the function objects are not compiled into
executeables. The compiler creates libraries when the function objects are compiled. This libraries contain the
functions in a machine readable form.

The keyword enabled is optional. With this keyword function objects can be excluded from execution.

functions

{
NAME
{
type TYPE;
functionObjectLibs ("LIBRARY");
enabled true;
/%

Definition

83If OpenFOAM expects a keyword from a limited set of allowed keywords, stating an invalid keyword usually causes OpenFOAM
to print the list of allowed entries.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vi Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

168

http://www.openfoam.com/features/runtime-postprocessing.php

*/

Listing 220: Definition of function objects in the file controlDict

--> FOAM FATAL ERROR:
Unknown function type banana

Valid functions are

13

(

cellSource

faceSource

fieldAverage
fieldCoordinateSystemTransform
fieldMinMax
nearWallFields
patchProbes

probes

readFields

sets

streamLine
surfacelnterpolateFields
surfaces

)

Listing 221: Output of the banana-trick; applied to the keyword type

29.2 probes

The function probes saves the values of certain field quantities at specific points in space. Listing 222 shows an
example of the definition of a probes function object.

This function object is of the type probes. The name of the function object is probes1. The data generated
by this function is stored in the directory probesl. This directory contains a sub-directory. The name of
this sub-directory corresponds to the time at which the simulation is started. This prevents files from being
overwritten in case a simulation is continued at some point in time.

Figure 52 shows the directory tree after a simulation ended. There, the folder probesl contains a sub-
directory named 0. This is the time the simulation started. The 0 folder contains the files p and U.

The keywords outputControl and outputInterval are optional. They control — as their names suggest —
the way the data is written to the hard drive.

fields contains the names of the fields that are of interest. probeLocations contains a set of points. The
data of a specified field is computed for this locations and written to a file. The name of this file is the fields of
interest. Listing 222 will result in two files. The file p contains the values of the pressure for all locations, the
file U will contain the values of the velocity at all locations.

The function probes is contained in the file 1ibsampling.so. This information can be gained from the
tutorials. See Section 49.3 for more information about how to search the tutorials for specific information.

functions

{
probesl
{
type probes;
functionObjectLibs ("libsampling.so");
enabled true;
outputControl timeStep;
outputInterval 1;
fields
(
P
U
)5
VI This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 169

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

probelLocations

(

(0.0254 0.0253 0)
(0.0508 0.0253 0)

)
}

}

Listing 222: The definition of probes in the file controlDict

caseDirectory
0
More time steps
constant
L,polyMesh
robesl
0

I

system

Figure 52: A part of the directory tree after the simulation ended

29.2.1 Pitfalls
Probe location outside the domain

If the probe location is outside of the domain OpenFOAM will issue a warning message and continue with the
simulation.

--> FOAM Warning
From function findElements::findElements (const fvMesh&)
in file probes/probes.C at line 102
Did not find location (0.075 0 0.48) in any cell. Skipping location.

Listing 223: probe location outside of the domain

Unknown or non-existent field

If the probes dictionary contains fields that are not present to be probed, then no warning or error message will
be issued. OpenFOAM simply continues computation. If the dictionary contains no valid fields to be probed,
then the probe function will not be executed. Consequently no folder for storing the data will be created.

29.3 fieldAverage

fieldAverage computes time-averaged fields. Listing Ist:field AverageControlDict shows an example of how this
function is set up.

functions

{
fieldAveragel
{
type fieldAverage;
functionObjectLibs ("libfieldFunctionObjects.so");
enabled true;
outputControl outputTime;
fields
(
Ua
{
mean on;
prime2Mean off;
VI This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 170

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

base time;

Listing 224: Definition of a fieldAverage function object in the file controlDict

29.4 faceSource
29.4.1 Average over a plane

faceSource extracts data from surfaces (faces). Listing 225 shows how the average of a field quantity over a
cutting plane is set up.

functions
{
faceObj1
{
type faceSource;
functionObjectLibs ("libfieldFunctionObjects.so");
enabled true;
outputControl outputTime;

// Output to log&file (true) or to file only
log true;

// Output field values as well
valueOutput false;

// Type of source: patch/faceZone/sampledSurface
source sampledSurface;

sampledSurfaceDict
{
// Sampling on triSurface
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{
basePoint (0 0 0.3
normalVector (O

N
01);
}

interpolate true;

}

// Operation: arealAverage/sum/weightedAverage

operation areaAverage;

fields

(
alpha

)

Listing 225: Definition of a faceSource function object in the file controlDict

29.4.2 Compute volumetric flow over a boundary

Listing 226 shows the definition of a function object that is used to compute the volumetric flow over a boundary
face. The key points for this are the definition of a weight field and the use of the summation operation. The
weight field is automatically applied to the processed field, there is no need to specifically an operation such as
weightedSum. If no weight field is defined, no weight field is used.

functions

{

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vi Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

L S N

faceln

{
type faceSource;
functionObjectLibs ("libfieldFunctionObjects.so");
enabled true;
outputControl timeStep;
log true;
valueOutput false;
source patch;
sourceName spargerInlet;
surfaceFormat raw;
operation sum;
weightField alphal;
fields
(

phiil

)

}

Listing 226: Definition of a faceSource function object in the file controlDict

29.4.3 Pitfall: valueOutput

The option valueOutput writes the field values on the sampled surface to disk. This can lead to massive disk
space usage when setting outputControl to timeStep. In this case the field values are written for every time
step. The option valueOutput should be disabled unless it is really needed.

Figure 53 shows the contents of the postProcessing folder after two time steps have been written to disk.
For each sampled field the field values on the sampled patch are written to disk in files in the surface folder.

postProcessing
| faceObj1
0
| faceSource.dat
surface
0.1
phi_patch_outlet.raw
p_patch_outlet.raw
U_patch_outlet.raw
0.2
phi_patch_outlet.raw
p_patch_outlet.raw
U_patch_outlet.raw

Figure 53: The content of the postProcessing folder

29.5 cellSource

The cellSource function object acts on all cells of the mesh or on the cells of a cellZone.

Listing 227 shows the definition of a cellSource function object. In this case, a part of the domain is contained
in the cellZone left. The function object calculates the volume-average value of the volume fraction of air. The
keyword valueOutput is set to the value false and marked as evil by the comment for reasons explained in
Section 29.4.3.

functions

{
airContent_left
{
type cellSource;
functionObjectLibs ("libfieldFunctionObjects.so");
VI This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 179

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

10
11
12
13
14
15
16
17
18
19
20

© o N e U oA W N R

e e
ST CE Y

enabled true;
outputControl timeStep;

log true;
valueOutput false; // evil
source cellZone;
sourceName left;
operation volAverage;
fields

(
alpha.air

)

Listing 227: A usage example of the cellSource function object

29.6 Execute C++4 code as functionObject

OpenFOAM makes it possible to execute C++ code as a functionObject®*. This feature is disabled by default.
To activate it a flag has to be changed. This is done for a single user in ~/ . OpenFOAM/$WM_PROJECT_VERSION/controlDict
or system wide in $WM_PROJECT_DIR/etc/controlDict. In one of these files the flag shown in Listing 228 has
to be set to one. It can be, that the first of these files does not exist, i.e. there are no user specific settings.
The question of precedence (User setting over system wide setting) has not been pursued by the author.

Listing 229 shows an example of this feature. The field quantities U1, U2 and p are read in and some
calculated values are printed to the Terminal.

// Allow case-supplied C++ code (#codeStream, codedFixedValue)
allowSystemOperations 1;

Listing 228: Allow case-supplied C++ code

extralnfo

{
type coded;
functionObjectLibs ("libutilityFunctionObjects.so");
redirectType average;
code
#{
const volVectorField& Ul = mesh().lookupObject<volVectorField>("U1");
const volVectorField& U2 = mesh().lookupObject<volVectorField>("U2");
Info << "max Ul = " << max(mag(Ul)).value() << ", U2 = " << max(mag(U2)).value() << endl;
const volScalarField& p = mesh().lookupObject<volScalarField>("p");
Info << "p min/max = " << min(p).value() << ", " << max(p).value() << endl;
#};
}

Listing 229: Define a functionObject using C++

When the solver is invoked, the so called coded functionObject is compiled on the fly. Listing 230 shows a
portion of the solver output. Between the entry into the time loop and the first calculations, the code is read
from controlDict and pasted into a template of a coded functionObject.

Starting time loop

Using dynamicCode for functionObject extralnfo at line 69 in "/home/user/OpenFO0AM/user-2.1.x/
run/twoPhaseEulerFoam/bubbleColumn/system/controlDict::functions::extralnfo"

Creating new library in "dynamicCode/average/platforms/linux64GccDPOpt/1lib/
libaverage_731fed868edc5a1d75988808649ac874cf00e044.5s0"

Invoking "wmake -s libso /home/user/OpenFOAM/user-2.1.x/run/twoPhaseEulerFoam/bubbleColumn/
dynamicCode/average"

wmakeLnInclude: linking include files to ./lnInclude

Making dependency list for source file functionObjectTemplate.C

84The release notes of OpenFOAM-2.0.0 suggest that this feature was introduced with version 2.0.0. See http://www.openfoam.
org/version2.0.0/

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vi Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

173

http://www.openfoam.org/version2.0.0/
http://www.openfoam.org/version2.0.0/

Making dependency list for source file FilterFunctionObjectTemplate.C

’/home/user/0OpenFO0AM/user-2.1.x/run/twoPhaseEulerFoam/bubbleColumn/dynamicCode/average/../
platforms/1linux64GccDPOpt/lib/libaverage_731fed868edc5a1d75988808649ac874cf00e044 .50’ is
up to date.

Courant Number mean: 1.68517e-05 max: 0.00363

Max Ur Courant Number = 0.00363

Time = 0.001

MULES: Solving for alphal

Listing 230: On the fly compilation of C++ coded functionObjects

OpenFOAM creates a directory named dynamicCode in the case directory. There, all files related to the
coded functionObject can be found, source files as well as binaries. Figure 54 shows the directory tree after
OpenFOAM compiled the coded functionObject.

caseDirectory
, 0
, _constant
L,polyMesh
| dynamicMesh
average
InInclude
Make
| 1inux64GccDPOpt
platforms
L,linux64GchPOpt
|_1ibs
L, _system

Figure 54: Directory tree after compilation of a coded functionObject

29.7 Execute functions after a simulation has finished
29.7.1 execFlowFunctionObjects

execFlowFunctionObjects is a post-processing tool of OpenFOAM. This tool allows the user to execute function
objects after a simulation is finished. Normally, function objects are executed during the simulation. However,
in some cases it is useful to apply a function to the data set of a already completed simulation, e.g. for testing
the function.

Defining function objects in a seperate file

Listing 231 shows a file which contains only the definition of a function object. For the sake of clarity, this
file is named functionDict. Defining functions in a seperate file reflects the division of labor in some way.
The file controlDict is controlling the solver, whereas the file functionDict defines the function objects. The
file functionDict can be included into the file controlDict by an #include statement. See Section 8.3.5 for
examples.

FoamFile

{
version 2.0;
format ascii;
class dictionary;
location "system";
object functionDict;
}

J/ % k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok k k k x kx *k *k * *k *x *x x *x *x *x *x //

functions
{
probesl

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vi Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

174

{
type probes;
functionObjectLibs ("libsampling.so");
dictionary probesDict;
}
}

Listing 231: Define functions in a seperate dictionary. The file functionDict

Run execFlowFunctionObejcts

execFlowFunctionObjects has to be told, that the functions are defined in a seperate file. By default, the tool
reads the file controlDict. By using the parameter —dict the user can specify an alternative file containing
the function dictionary.

execFlowFunctionObjects -noFlow -dict functionDict

Listing 232: Invokation of execFlowFunctionObjects

29.7.2 postAverage

postAverage is a small tool that is also designed to run functions on a already completed simulation. See Section
35.

30 sample

sample is a simple post processor. This tool is controlled by the file sampleDict. sample extracts data from
the solution of a specific region. sample can extract data from the following geometric regions:

e from one or several points in space
o along a line
e on a face

sample is usually executed after a simulation has finished.

30.1 Usage

The simplest way to use sample is to call the command sample. In this case sample looks for a file named
sampleDict located in the system directory. With the -dict an alternative file with a different name can be
specified. However, this file has to reside in the system directory.

By default sample operates on all time steps. The option -latestTime can be used to sample only the latest
solution data. The option -time can be used to specify a certain time or a time range to operate on.

Specifying a limited number of time steps to perform sampling on significantly reduces the time needed for
this operation. The disk space used by the data generated by sample is usually in the order of up to a few
megabytes. Therefore saving hard disk space is not an issue when using sample.

30.2 sampleDict

The file sampleDict controls what and where data is to be sampled.

30.2.1 Output format

There are 6 possible output formats (csv, gnuplot, jplot, raw, vtk, xmgr). The difference between the listed
formats is the way how the data is organised inside the file.

sample creates one file for scalar quantities and one for vector quantities. The names of the data files
are built from the names of the sampled fields, the output format and the name of the geometric set. E.g.
lineXuniform_Ua_Ub.csv, this file contains the velocity fields Ua and Ub along the line lineXuniform. The
data format of the sampled data is comma seperated values (csv).

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vi Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

175

30.2.2 Fields

The fields that are to be sampled are listed in the list fields.

Invalid entries are ignored, without any warning message. In the example of Listing 233 the list of fields
contains the name banana. However, there is no field named banana, so sample will simply ignore this entry —
sample will not issue any warning or error message. Thus, a typo in the sampleDict is not that easy to find.
sample reports no warning but the intended field is not sampled. Always double check the entries in the fields
sub-dictionary for typos, especially when sampling fields with composite names, e.g. U2Mean or U2Prime2Mean.

// Fields to sample.
fields
(

alpha

banana

Ua

Ub

Listing 233: Fields to sample in the file sampleDict

30.2.3 Geometric regions
The geometric regions on which sample can operate are

sets A set can contain one or several points or a line. Along a line, points can be distributed in an equidistant
fashion.

surfaces A surface can be defined in several ways. Possible are, among others, cutting planes or iso-surfaces.

30.2.4 Pitfalls
Missing keywords

If the keywords sets and surfaces are missing in sampleDict, sample will run without producing any error mes-
sages or any data. If in Listing 234 the word banana would be replaced by sets and orange by surfaces, sample
would work as expected. If sample is called with a sampleDict like in Listing 234, sample produces no data and
issues no warning.

setFormat raw;
surfaceFormat vtk;

formatOptions
{
ensight
{
format ascii;
}
}

interpolationScheme cellPoint;

fields
(
P
U
);
banana
(
lineX1
{
type uniform;
axis distance;
start (0.0015 0.5027 0.05);
end (0.0995 0.5027 0.05);
VI This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 176

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

nPoints 20;
}
);

orange
(
);

Listing 234: Not working example of sampleDict

Faulty line definition

If the data along a line is to be sampled and the definition of the line is errorneous so that the line is outside
the domain, sample will issue a warning message. Listing 235 shows an example of such a warning message.
However, sample will not report an error and it will finish its run. So, when the output of sample is not checked,
this might go unnoticed.

--> FOAM Warning
From function sampledSets::combineSampledSets(..)
in file sampledSet/sampledSets/sampledSets.C at line 102
Sample set 1lineX0 has zero points.

Listing 235: Warning message of sample due to a faulty line definition

31 ParaView

ParaView is a graphical post-processor. This program is called by invoking the command paraFoam. paraFoam
is a script that calls ParaView with additional OpenFOAM libraries.

31.1 View the mesh

Besides viewing and post-processing simulation results, ParaView can be used to view the mesh. When refining
a mesh it is important to check neighbouring blocks for the transition of mesh fineness. Figure 23 in Section 15
shows an example how ParaView displays a mesh.

Pitfall: default selection

If a user works on the refinement of the mesh and the definition of boundary conditions has not been made,
then calling ParaView can crash because of its default selection of the pressure field. After pressing the
button ParaView tries to read in all selected fields. In case of a faulty definition of the boundary fields, this
ends in the termination of the program. Listing 236 shows a corresponding error message.

--> FOAM FATAL IO ERROR:
keyword bottom is undefined in dictionary "/home/user/OpenFO0AM/user-2.1.x/run/icoFoam/case01
/0/p::boundaryField"

file: /home/user/OpenF0AM/user-2.1.x/run/icoFoam/case01/0/p::boundaryField from line 25 to
line 35.

From function dictionary::subDict(const word& keyword) const
in file db/dictionary/dictionary.C at line 461.

FOAM exiting

Listing 236: Reading error due missing boundary field definition

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vi Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Viewing the mesh

In this case the pressure field has to be manually unselected. If no fields are selected, paraView only reads
the mesh information. Therefore, it is possible to view the mesh without the rest of the case properly set up.
After the button has been pressed and paraView has read all the data, the user has to choose from the

representation drop-down menu in the toolbar the option [Surface with edges|.

[® paraview 3.12.0 64-bit

File Edit View Sources Filters Tools Macros Help
peBRwadF?

I s 5| @ solid color Bl

) Outline
| Points
Surface

Volume

Wireframe

Pipeline Browser

T
E builtin:

@ oscillation01.0penFOAM

Figure 55: Select the proper representation to view the mesh

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vi Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

178

Part VII
External Tools

Besides para View, there are a number of other useful tools, which do not come from the OpenFOAM Foundation.
This section will cover such tools.

32 pyFoam

pyFoam is a collection of useful Python®® scripts. These scripts are mostly written to serve one specific task.
Further information can be found at http://openfoamwiki.net/index.php/Contrib_PyFoam.

32.1 Installation

The installation of pyFoam is described at http://openfoamwiki.net/index.php/Contrib_PyFoam#Installation.
The major prerequisite for the use of pyFoam is, that a Python interpreter is installed. To check if a Python
interpreter is installed on the system, simply type python --version in the Terminal. If a version number is
displayed, like Python 2.7.3, then Python is installed. Otherwise, the operating system would display an error
message, stating that the command python can not be found.

Further information about Python are found at http://python.org/ and http://docs.python.org/.

32.2 pyFoamPlotRunner

The script pyFoamPlotRunner starts a simulation and plots the residuals like Fluent would do.

user@host :~/0OpenFO0AM/user-2.1.x/run/twoPhaseEulerFoam/columnCase$ pyFoamPlotRunner.py
twoPhaseEulerFoam

Listing 237: Calling pyFoamPlotRunner

32.2.1 Plotting options

Listing 238 shows the plotting options offered by pyFoam.

What to plot

Predefined quantities that the program looks for and plots

--no-default Switch off the default plots (linear, continuity and
bound)

--no-linear Don’t plot the linear solver convergence

--no-continuity Don’t plot the continuity info

--no-bound Don’t plot the bounding of variables

--with-iterations Plot the number of iterations of the linear solver

--with-courant Plot the courant-numbers of the flow

--with-execution Plot the execution time of each time-step

--with-deltat ’Plot the timestep-size time-step

--with-all Switch all possible plots on

Listing 238: Plotting flags of the pyFoamPlot* utilities

32.3 pyFoamPlotWatcher

The script pyFoamPlot Watcher is intended to visualize solution data (e.g. residuals, time steps, Courant number,
etc.) after the simulation has finished. This requires that the solver output is written into a file, see Section
9.1.1. pyFoamPlotWatcher does essentially the same job as pyFoamPlotRunner with the difference that the
former tool is for finished simulations and the latter monitors a running simulation. So the description of the
features of pyFoamPlotWatcher holds also true for pyFoamPlotRunner.

85Python is an interpreted programming language.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

viI Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

179

http://openfoamwiki.net/index.php/Contrib_PyFoam
http://openfoamwiki.net/index.php/Contrib_PyFoam#Installation
http://python.org/
http://docs.python.org/

user@host :~/0penFO0AM/user-2.1.x/run/twoPhaseEulerFoam/columnCase$ pyFoamPlotWatcher.py LOGFILE

Listing 239: Calling pyFoamPlot Watcher

By default pyFoamPlotWatcher plots the curves of the residuals, continuity information and bounded vari-
ables. With options several other curves can be plotted (e.g. time step, iterations, Courant number, etc.). With
regular expressions user specified data can be extracted from the log file.

Listing 240 shows the invokation of pyFoamPlot Watcher to plot additionally to the default selection also the
Courant number. The processing of the solver output stored in the file LOGFILE is limited with the option --end
with a specific value — 0.1s in this case. There is also a ——start option. The plot created by the command in
Listing 240 is shown in Figure 56.

pyFoamPlotWatcher.py LOGFILE --end=0.1 --with-courant

Listing 240: Calling pyFoamPlot Watcher with some options

1 @ Gnuplot =)

Courant

nax ——
I wean

Courant Mumber [1]

0 0.01 0,02 0.03 0,04 0.08 0.08 0.07 0.0 0.09 0.1
Time [s]

0,0917588, 1,02263
T =T

™ e o

Figure 56: The Courant number plotted with pyFoamPlotWatcher.

32.3.1 Custom regular expressions

With regular expressions pyFoamPlot Watcher can extract arbitrary data from the solver output. This section

elaborates this feature by the example of plotting the Courant number based on the relative velocity of a
two-phase solver.

General information

pyFoamPlot Watcher has no option to display the history of the Courant number based on Ur, the relative velocity
between the phases. Listing 241 shows some lines of the solver output of the two-phase solver twoPhaseFEuler-
Foam. The line in red displays the Courant number based on the relative velocity Ur. The line above the
red colored line displays the Courant number based on the mixture velocity, see Section 39.5.4 and 39.5.4

for information on the definition of the Courant number and the Courant number of the two-phase solver
twoPhaseFEulerFoam.

DILUPBiCG: Solving for k, Initial residual = 0.000824921, Final residual = 1.47595e-06, No
Iterations 2

ExecutionTime = 70870.7 s ClockTime = 71186 s
Calculating averages
Courant Number mean: 0.103485 max: 0.422517

Max Ur Courant Number = 0.448791
deltaT = 0.00380929

VII This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 180
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Time = 72.5848

MULES: Solving for alphal
MULES: Solving for alphal

Listing 241: Some lines of the solver output of twoPhaseFEulerFoam

Extracting the information

To extract the information from the log file we need to create a file containing the regular expression.

{"expr":"Max Ur Courant Number = (%f%)","name":"UrCoNum"}

Listing 242: The file customRegexp

If pyFoamPlotWatcher finds a file named customRegexp in the case directory, this file will be processed
automatically. If the file containing the regular expression has another name or is located inanother place the
option --regexp-file=REG_EXP_FILE can be used to specify the path to that file.

Listing 242 contains comma seperated entries ("expr" and "name"). The values are seperated by a colon
from the name of the entries (e.g. "name":"UrCoNum"). The first entry contains the regular expression to
extract the data. The second provides the name of the extracted data, but this entry can be omitted.

* Gnuplot [} -oig

Custom 1 - UrCobum
45000

walue 0

40000
35000
30000
n 25000
20000
15000

= 10000

G000 n A
|Z j
yin b Al |

[0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.3 1
Tine [s]

-

0,213605, _49548,2

" T e Tt T T

Figure 57: The Courant number based on the relative velocity plotted with pyFoamPlot Watcher

The absurdly high value of the Courant number indicates that the simulation did not go well. The need
for plotting the Courant number based on Ur emanated from a trouble-shooting episode. Thus this section was
written to preserve the gained knowledge.

32.3.2 Custom regular expression revisited

The plotting utilities of pyFoam (pyFoamPlotRunner and pyFoamPlotWatcher) accept custom regular expres-
sions also in a different format than the format of Listing 242. This new format was introduced with version 0.5.3.
See http://openfoamwiki.net/index.php/Contrib_PyFoam#Plotting_with_customRegexp-files for fur-
ther information. The new format looks resembles an OpenFOAM dictionary.

Listing 243 shows an example of the solver output that will be post-processed. The goal is to draw curves of
the quantities of the red line. Listing 244 shows the corresponding regular expression. The plotting utilities of
pyFoam offer the ——dump-custom-regegexp option to generate the custom regular expression in the new format
from the old format. Listing 245 is the result of this operation.

DILUPBiCG: Solving for beta, Initial residual = 0.000307666, Final residual = 7.36162e-08, No
Iterations 2

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

viI Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

http://openfoamwiki.net/index.php/Contrib_PyFoam#Plotting_with_customRegexp-files

DILUPBiCG: Solving for T, Initial residual = 0.000514273, Final residual = 2.57279e-07, No
Iterations 1

Concentration = 0.0509085 Min T = 0.00498731 Max T = 0.218343

Bubble load = 0.00623198 Min beta = 0 Max beta = 0.0677904

Time = 19.96

Listing 243: Some lines of the solver output to post-process

{"expr":"Concentration = (%f%) Min T = (%£f%) Max T = (%f%)","name":"Concentration","titles
":["avg","min","max"]}

Listing 244: The custom regular expression in the odl format

CustomO1
{
accumulation first;
enabled yes;
expr "Concentration = (%£f%) Min T = (%f%) Max T = (hf%h)";
name CustomOl_Concentration;
persist no;
raisit no;
theTitle "Custom 1 - Concentration";
titles
(
avg
min
max
);
type regular;
with lines;
xlabel "Time [s]";

Listing 245: The custom regular expression in the new format

32.3.3 Special treatment of certain characters

Note that the solver output we processed so far contained no parentheses. The parentheses are interpreted by
the regular expression. In order to deal with parentheses in the solver output they need to be escaped properly.
The same is true for brackets. So the following example is also valid, when brackets are contained in the solver
output that is to be processed with regular expressions.

Listing 246 shows some lines of solver output of twoPhaseEulerFoam. The line marked in red contains
parentheses. In order to post-process these lines with regular expressions these parentheses need to be escaped
in the regular epxression. Listing 247 shows the corresponding regular expression. Note the escaped parentheses
marked in red.

Time = 19.9957

MULES: Solving for alphal

MULES: Solving for alphal

Dispersed phase volume fraction = 0.0168317 Min(alphal) = 3.92503e-87 Max(alphal) = 0.2

GAMG : Solving for p, Initial residual = 9.46269e-05, Final residual = 1.65711e-06, No
Iterations 1

time step continuity errors : sum local = 2.08826e-05, global = 4.51574e-08, cumulative =
-0.0334048

Listing 246: Some lines of the solver output of twoPhaseFEulerFoam

{"expr":"Dispersed phase volume fraction = (%£f%) Min\(alphall) = (%f%) Max\(alphall) = (%£f%)
","name":"Volume fraction","titles":["avg","min","max"]}

Listing 247: The regular expression to extract the information about the volume fraction

Not only the parentheses have a special meaning in regular expressions. An internet search®® or detailed
knowledge on regular expressions will yield the knowledge which characters have to be escaped.

86F.g. http://stackoverflow.com/questions/399078/what-special-characters-must-be-escaped-in-regular-expressions

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 182

VII

http://stackoverflow.com/questions/399078/what-special-characters-must-be-escaped-in-regular-expressions

32.3.4 Ignoring stuff

Listing 247 extracts three numbers from the line marked in Listing 246. Using this regular expression plots all
three curves. If we are interested in only the first number — the average volume fraction — we replace the second
and third (%£%) with a .+ to ignore the second and third number. In this special case this seems an overkill
— we could also delete parts of the expression since we are only interested in the first number — but if we are
interested in the first and the third number, then we need to ignore the second number.

32.3.5 Producing images

The Figures 56 and 57 are screenshots of the images plotted by pyFoamPlotWatcher. However, there is the
option --hardcoded that tells the pyFoam plot utilities to save the plots on the disk. By default a PNG image
is produced but with the option --format-of-hardcopy=HARDCOPYFORMAT other formats can be chosen.

Figure 58 shows the plot produced by the regular expression of Listing 247.

Custom 1 - Volume fraction

0.025 :
avg
002 /L |
//
//
0.015 - | J
/"’
/
001} | 1
/
‘//
0.005 -/ 1
//
0 i Il Il Il Il
0o 2 4 6 8 10 12 14 16 18 20
Time [s]

Figure 58: The average volume fraction plotted with pyFoamPlot Watcher and a custom regular expression

32.3.6 Writing data

Producing images is often not enough for post-processing. The option —-write-files causes pyFoam to write
the extracted data to the hard drive. Thus the extracted data can be processed by other programs.

32.3.7 Case analysis
The option —-with-all generate a number of plots that can be helpful to examine the performance of simulation
case. See Listing 238 for an explanation of the available plots.

VII This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 183
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Execution Time
38

chu
clock

36

Time [=1

o 0.z 0.4 0.6 0.8 1 1.z 1.4 1.6 1.8 2
Time [s1

Figure 59: The execution time plotted over time with pyFoamPlotWatcher. The occasional writing of the data
to harddisk are clearly visible as spikes in the execution time.

32.4 pyFoamClearCase

As the name implies, pyFoamClearCase cleans the case directory. This script deletes all time directories save
the 0 directory. By the use of command line options, a finer control of the actions of pyFoamClearCase is
possible. Some of these options are:

—keep-last keep the last time step

—keep-regular keep all time steps

—after=T delete all time steps for ¢t > T
—remove-processor delete the processor* directories

The script is invoked by typing its name in the Terminal. Listing 248 shows how this script is executed. The
options cause pyFoamClearCase to keep the last time directory and to remove all processor* folders.

pyFoamClearCase.py . --keep-last --remove-processor

Listing 248: Calling pyFoamClearCase

Note the file ending . py after the name of the script. This ending indicates, that the script is written in Python.
It also indicates, that pyFoamClearCase is an executable script rather than a program on its own.

32.5 pyFoamCloneCase

This script is used to copy a case. By default the 0, the constant and the system directory are copied. Addi-
tionally, there are various command line arguments to control the operation of the script, e.g. copy also the
latest time step or the processor* directories.

32.6 pyFoamDecompose

This script is used to decompose the computational domain. Other than the tool decomposePar, this script
does not need an existing decomposeParDict. This script receives command line arguments, generates the
decomposeParDict and calls decomposePar.

In Listing 249 the script is called with two arguments. The first argument is the path to the case directory.
In this case the dot refers to the currect directory. The second argument is the number of sub-domains. From
this arguments, pyFoamDecompose creates a decomposeParDict. The first argument is necessary to tell the
script where to save the newly created file. The second argument is the most fundamental information for
domain decomposition — the number of sub-domains.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vi Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

184

There is a large number of additional arguments which allow to exert more control over the way the domain
is decomposed.

pyFoamDecompose.py . 4

Listing 249: Invokation of pyFoamDecompose

Listing 250 contains the decomposeParDict created by the command of Listing 249.

J/ ok Kk K kX k x X /)
FoamFile
{
version 0.5;
format asciij;
root "ROOT";
case "CASE";
class dictionary;
object nix;
}
method scotch;
numberO0fSubdomains 4;
scotchCoeffs
{
}

Listing 250: The file decomposeParDict generated by pyFoamDecompose decomposeParDict

The output of pyFoamDecompose is stored in the file Decomposer.logfile.

32.7 pyFoamDisplayBlockMesh

If there is a problem with mesh topology and one isn’t able to find the error in the blockMeshDict, this tool
can be of great help. pyFoamDisplayBlockMesh does exactly what the name of the tool suggests. It reads
blockMeshDict and displays the topology of the mesh. One might think, that that’s exactly what is described in
Section 12.6.1 (display the blocks with paraView). However, if the definition of the mesh is erroneous, blockMesh
will not create a mesh and paraView is therefore not able to display the blocks.

pyFoamDisplayBlockMesh is a tool that allows the user to visualise a faulty mesh. This is of great help
to find e.g. an error in the block definition, especially when there are more than one blocks. In Figure 60 a
screenshot of the GUI of this tool is shown. In the main panel the vertices and the edges are displayed. With
the two sliders below single blocks as well as patches can be marked and coloured. The local axes of a single
block are displayed as tubes labelled with the corresponding names of the axes.

The blocks shown in Figure 60 have a faulty definition, so blockMesh produces an error message instead of
creating a mesh. With the help of this tool, the cause for the error is easily found. The marked block should
be in the right part of the geometry, so vertex number 5 should not be part of this block.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 185

VII

Case aa axiSymF lotCellLowPart - DisplayBlockMesh
Blockmesh file Display Utilities
Display Properties ®

Number scale (140 |2
Pointscale (1,50 |2
Axis label scale (0,80 ;]
Axis tube scale (1,21 |2

Main controls

Block (-1 is none)

Patch (-1 is none) (-}

Figure 60: Screenshot of pyFoamDisplayBlockMesh

Right of the main panel the output of the standard meshing utilities blockMesh and checkMesh can be
displayed (not shown in the picture). These utilities can be executed from the menu of this tool. Moreover, the
blockMeshDict can be edited with this tool.

32.8 pyFoamCaseReport

The tool pyFoamCaseReport generates a summary of the simulation case. The amount of information displayed
can be controlled by command line flags. Listing 251 shows how to create a full summary of a case. However,
the full information lies within the dictionaries of the case. This tool provides only selected information.

pyFoamCaseReport.py --full-report

Listing 251: Create a summary of the case with pyFoamCaseReport

33 swak4foam

The name swak4foam comes from SWiss Army Knife for Foam. swakjfoam evolved from a collection of tools
like groovyBC, funkySetFields and simpleFunctionObjects. The documentation of swaksfoam is located at http:
//openfoamwiki.net/index.php/Contrib/swak4Foam.

33.1 Installation

To install swak4foam one needs to download the source code and compile them. The source code of swak4foam
is managed by the use of a subversion®” repository. Listing 252 shows how the source code is downloaded
by subversion. The first command changes the working directory of the terminal to ~/0penFOAM. The second
command creates a directory named swak4foam. The third command changes the working directory of the
terminal to the newly created folder and the last commands actually downloads the source code to the current
directory.

87 subversion, abbreviated SVN, is a version control software to manage software projects.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

VI Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

186

http://openfoamwiki.net/index.php/Contrib/swak4Foam
http://openfoamwiki.net/index.php/Contrib/swak4Foam

cd ~/0penF0AM

mkdir swak4foam

cd swak4foam

svn checkout https://openfoam-extend.svn.sourceforge.net/svnroot/openfoam-extend/trunk/
Breeder_2.0/libraries/swak4Foam/

Listing 252: Installation of swakjfoam

After downloading, the sources need to be compiled by calling Allwmake.

33.2 simpleSwakFunctionObjects

simpleSwakFunctionObjects is an extension of simpleFunctionObjects. The functions of this library are used to
post process data and extend functionality of OpenFOAM.

33.2.1 Extrema of a field quantity

If only the extrema of a field quantity are of interest, the tools of OpenFOAM (probes, sample) are of little use.
One way of solving this problem could be, to modify the solver to write the extrema to the standard output.
In Listing 253 some line of the standard output of twoPhaseFulerFoam are shown. This solver prints the mean
value as well as the extrema of the volume fraction of the dispersed phase. The corresponding lines of source
code can serve as a blueprint for a solver modification.

However, if the user is not inclined to modify and compile OpenFOAM solvers, simpleSwakFunctionObjects
provide the solution.

DILUPBiCG: Solving for alpha, Initial residual = 3.48391e-05, Final residual = 2.94111e-12,
No Iterations 2

Dispersed phase volume fraction = 0.00824276 Min(alpha) = -1.66816e-19 Max(alpha) = 0.6

DILUPBiCG: Solving for alpha, Initial residual = 3.71563e-07, Final residual = 8.16115e-14,
No Iterations 2

Dispersed phase volume fraction = 0.00824276 Min(alpha) = -3.31819e-19 Max(alpha) = 0.6

Listing 253: Solver-Ausgabe von twoPhaseEulerFoam

swakExpression

The function to do the job is called swakEzpression. This function is part of the library libsimpleSwakFunc-
tionObjects. Listing 254 shows how this function is set up as a function object in the file controlDict. In this
example the minimal value of the field alpha is saved. Notice the statement in last line of the Listing. This
statement tells the solver to use the specified library. This library contains the function swakExpression. See
Section 8.3.3 for further information about using external libraries.

functions
{
minAlpha
{
type swakExpression;
verbose true;
accumulations (min);
valueType internalField;
expression "min(alpha)";
}
}

libs ("libsimpleSwakFunctionObjects.so");

Listing 254: Definition of the function swakEzpression in the file controlDict

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

viI Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Keywords
This section explains the most important keywords of Listing 254.
type specifies the type the function object

verbose a switch that controls whether the generated data is to be printed on the solver output or not. The
data is written into a file anyway.

accumulations allowed entries: {min,max,average,sum}. Quote from the CFD-Online Forum®: accumu-

lations is only needed if you need ”a single number” to print to the screen. For instance if you use a
swakEzpression-FO to print the mazimum and minimum of your field to the screen.

valueType defines the type of the geometric region on which the function is applied. Allowed entries:
{internalField cellSet faceZone patch faceSet set surface cellZone}

expression defines the quantity that is sought for. This can be a simple statement or a formula computing a
quantity.

34 blockMeshDG

blockMeshDG is a modification of the meshing tool blockMesh to allow for double grading. Double grading
means, that the ratio between the discretisation length of the middle and the ends of an edge is prescribed.
This tool was developed by some users of OpenFOAM and is was published in the CFD-Online OpenFOAM
Forum (http://www.cfd-online.com/Forums/openfoam/70798-blockmesh-double-grading.html). There
is also a page in the OpenFOAM Wiki (http://openfoamwiki.net/index.php/Contrib_blockMeshDG).

34.1 Installation

The downloaded source code is ready for compilation after unpacking. All necessary entries have already been
made to prevent the new utility to collide with the standard utilities of OpenFOAM. The make script creates
an executable named blockMeshDG.

34.2 Usage

To discern between normal grading and double grading, the expansion ratio needs to be negative for double
grading®”. A positive entry causes normal grading to be applied just like it is the case with the standard utility.

34.3 Pitfalls
34.3.1 TUneven number of cells

blockMeshDG obviously has a problem with an uneven number of cells. Figure 61 shows the resulting mesh,
when 15 cells are used for the double graded edge. In this case, although the mesh is of bad quality, checkMesh
reports no error. However, the output of checkMesh contains some indications that something is not alright.

Listing 255 shows some lines of the output of checkMesh. The very high aspect ratio is an indicator that
something is wrong with the mesh. Also the fact that the minimum and maximum values of face area or cell
volume differ by up to three orders of magnitude should lead to the same conclusion. Unfortunately, checkMesh
issues not even a warning message.

Checking geometry...

Max aspect ratio = 81 OK.

Minimum face area = 3.8395e-08. Maximum face area = 1.68746e-05. Face area magnitudes OK.
Min volume = 9.59875e-11. Max volume = 4.21864e-08. Total volume = 4.92214e-05. Cell
volumes O0K.

Mesh non-orthogonality Max: 42.2304 average: 11.7938

Non-orthogonality check OK.

88http://www.cfd-online.com/Forums/openfoam/103504-swak4foam-calculating-velocity-transformations.html
89 A negative entry unequal to unity causes blockMesh to crash with a floating point exception. Therefore, using negative entries
for double grading does not alter the standard behaviour.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

viI Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

188

http://www.cfd-online.com/Forums/openfoam/70798-blockmesh-double-grading.html
http://openfoamwiki.net/index.php/Contrib_blockMeshDG
http://www.cfd-online.com/Forums/openfoam/103504-swak4foam-calculating-velocity-transformations.html

Min/max edge length = 3.079e-05 0.00508035 OK.

Listing 255: Some output of checkMesh

So far, the only solution to this problem is to use an even number of cells.

/]

T T
HHII ”H//
HNNRRRNEN
RiRanneass

o \ t \\\\\\\\\\\\

EEREEEERRRRE RN

/
\

VALY

7]

e

//
'
\
|

Figure 61: Double grading problem

35 postAverage

35.1 Motivation

This utility allows the user to execute functions after a simulation has finished. Normally, functions are executed
during the run-time of the solver.

The idea and most of the source code for this tool stems from the CFD On-
line Forum [http://www.cfd-online.com/Forums/openfoam-programming-development/
70396-using-fieldaverage-library-average-postprocessing.html#post237751]. This tool iterates
over all time steps and executes the functions at run-time. Basically, this tool is a solver, that solves no
equations.

35.2 Source code

The Listings 257 and 256 show the source code of this tool. The file createFields.H contains all statements
responsible for reading the existing fields. The functions can only be applied to fields that were created in
createFields.H.

The file createFields.H contains statements that allow the tool to be applied on simulation data following
both the old and the new naming convention of twoPhaseFulerFoam. The source code contains the field names.
In order to avoid writing a seperate tool for each naming scheme, the fields are read conditionally. I.e. the tool
trys to read only if the corresponding file is present. Otherwise the tool would abort with an error for trying to
access a non-existent file.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

viI Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

189

http://www.cfd-online.com/Forums/openfoam-programming-development/70396-using-fieldaverage-library-average-postprocessing.html#post237751
http://www.cfd-online.com/Forums/openfoam-programming-development/70396-using-fieldaverage-library-average-postprocessing.html#post237751

o N VI

©

10

11

12

13

14

15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

|
A\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / 0 peration |
\\/ A nd | Copyright (C) 1991-2009 OpenCFD Ltd.
\\/ M anipulation |
License

This file is part of OpenFO0AM.

OpenF0AM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Application
postAverage

Gerhard Holzinger based on work by Eelco van Vliet

Description
Post -processes data from flow calculations
For each time: calculates the time average of a sequence of fields and
writes time time average in the directory

#include "fvCFD.H"

int main(int argc, char *argv[])
{
arglist::noParallel();
timeSelector::add0Options();

#include "setRootCase.H"
#include "createTime.H"

instantlList timeDirs = timeSelector::selectO(runTime, args);
runTime.setTime (timeDirs [0], O0);
#include "createMesh.H"

forAll(timeDirs, timel)

{
runTime.setTime (timeDirs[timeI], timel);
Info<< "Adding fields for time " << runTime.timeName () << endl;
#include "createFields.H"

runTime.functionObjects () .execute ();

¥
Info<< "\nEnd" << endl;

return O;

}

// >k >k >k 3k 3k 3k 3k 3k 3k %k sk sk 5k 3k 3k >k >k >k %k %k %k >k >k >k >k 3k 3k 3k 3k 3k 3k 3k 3k >k % %k %k %k >k >k >k >k >k 3k 3k 3k 3k 3k 3k >k >k % % % % %k %k %k %k >k >k >k >k >k >k >k %k %k %k %k % % %k //

Listing 256: The file postAverage.C

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

viI Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

190

4 Info<< "Reading field p\n" << endl;

5 volScalarField p

6 (

7 IOobject

s (

9 ||pll .

10 runTime.timeName (),

11 mesh,

12 I0object::READ_IF_PRESENT,
13 I0object::NO_WRITE

14),

15 mesh

16)

17

18

19 [* mmmm e -
20 read only if they exist
b I ettt */
22 I0object UHeader

23 (

24 nygn s

25 runTime.timeName (),

26 mesh ,

27 I0object :: NO_READ

28)

29

30 autoPtr<volVectorField> U;

31

32 if (UHeader.header0k())

33 {

34 Info<< "Reading U.\n" << endl;
35

36 U.set(new volVectorField

37 (

38 I0object

39 (

40 nygn s

41 runTime.timeName (),
42 mesh,

43 I0object::MUST_READ,
44 I0object:: AUTO_WRITE
45),

46 mesh

47));

48 ¥

49

50

51 I0object UrHeader

52 (

53 "Ur",

54 runTime.timeName (),

55 mesh,

56 I0object :: NO_READ

57);

58

59 autoPtr<volVectorField> Ur;

60

61 if (UrHeader.header0k())

62 {

63 Info<< "Reading Ur.\n" << endl;
64

65 Ur.set(new volVectorField

66 (

67 I0object

68 (

69 "Ur",

70 runTime.timeName (),
71 mesh ,

72 I0object::MUST_READ,
73 I0object:: AUTO_WRITE
74),

75 mesh

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

viI Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

111

115
116

118

VII

));

/* o0ld naming convention for two-phase solvers */
/ * alpha, Ua, Ub, phia, phib */
I0object alphaHeader

(
"alpha",
runTime.timeName (),
mesh,
I0object:: NO_READ
);

autoPtr<volScalarField> alpha;

if (alphaHeader .header0k())

{
Info<< "Reading field alphal\n" << endl;
alpha.set(new volScalarField
(
I0object
(
"alpha",
runTime.timeName (),
mesh,
IO0object::READ_IF_PRESENT,
I0object :: NO_WRITE
),
mesh
1)
}

I0object UaHeader

(
"Ua",
runTime.timeName (),
mesh,
I0object :: NO_READ
);

autoPtr<volVectorField> Ua;

if (UaHeader.header0Ok())

{
Info<< "Reading Ua.\n" << endl;
Ua.set(new volVectorField
(
I0object
(
"Ua",
runTime.timeName (),
mesh,
I0object::MUST_READ,
IO0object:: AUTO_WRITE
),
mesh
));
¥

IOobject UbHeader

(
"Ub",
runTime.timeName (),
mesh,
I0object:: NO_READ
);

autoPtr<volVectorField> Ub;

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

192

148
149
150
151

153

154

155

156

158

165

211

VII

if (UbHeader.headerOk())

{
Info<< "Reading Ub.\n" << endl;
Ub.set (new volVectorField
(
I0object
(
IIUbll’
runTime.timeName (),
mesh,
I0object ::MUST_READ,
I0object:: AUTO_WRITE
)9
mesh
)
}

I0object phiaHeader

(
"phia",
runTime.timeName (),
mesh,
I0object:: NO_READ
);

autoPtr<surfaceScalarField> phia;

if (phiaHeader.headerOk())

{
Info<< "Reading phia.\n" << endl;
phia.set(new surfaceScalarField
(
I0object
(
"phia",
runTime.timeName () ,
mesh,
I0object::MUST_READ,
IO0object:: AUTO_WRITE
),
mesh
D)
}

I0object phibHeader

(
"phib",
runTime.timeName (),
mesh,
I0object :: NO_READ
);

autoPtr<surfaceScalarField> phib;
if (phibHeader.header0k())
{
Info<< "Reading phib.\n" << endl;

phib.set (new surfaceScalarField

(
IO0object
(
||phib|| s
runTime.timeName (),
mesh ,

I0object : :MUST_READ,
IOobject:: AUTO_WRITE

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

193

220),
221 mesh
222));

225 /* new naming convention for two-phase solvers */
226 /* alphal, U1, U2, phil, phi2 x/

227 I0object alphalHeader

228 (

229 "alphal",

230 runTime.timeName (),

231 mesh,

232 IOobject::NO_READ

233);

235 autoPtr<volScalarField> alphal;

237 if (alphalHeader.header0k())
238 {
239 Info<< "Reading alphal.\n" << endl;

241 alphal.set(new volScalarField
242 (

243 I0object

244 (

245 "alphal",

246 runTime.timeName (),
247 mesh,

248 I0object : :MUST_READ,
249 I0object:: AUTO_WRITE
250),

251 mesh

252));

253 }

255 I0object UlHeader

256 (

257 "g1n,

258 runTime.timeName (),
259 mesh,

260 IOobject::NO_READ
261)

263 autoPtr<volVectorField> Ul;

265 if (UlHeader.header0k())
266 {
267 Info<< "Reading Ul.\n" << endl;

269 Ul.set(new volVectorField

270 (

271 IO0object

272 (

273 "uin,

274 runTime.timeName (),
275 mesh,

276 IOobject ::MUST_READ,
277 I0object:: AUTO_WRITE

279 mesh
280));

284 I0object U2Header

285 (

286 "g2",

287 runTime.timeName (),
288 mesh,

289 I0object :: NO_READ

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vi Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

194

311

325

VII

autoPtr<volVectorField> U2;

if (U2Header .header0k())

{
Info<< "Reading U2.\n" << endl;
U2.set(new volVectorField
(
I0object
(
IIU2"’
runTime.timeName (),
mesh,
IOobject ::MUST_READ,
I0object:: AUTO_WRITE
),
mesh
)
}

I0object philHeader

(
"phil",
runTime.timeName (),
mesh,
I0object:: NO_READ
);

autoPtr<surfaceScalarField> phil;

if (philHeader.header0k())

{
Info<< "Reading phil.\n" << endl;
phil.set(new surfaceScalarField
(
I0object
(
“phit",
runTime.timeName (),
mesh,
I0object::MUST_READ,
IOobject:: AUTO_WRITE
),
mesh
D)
}
I0object phi2Header
(
"phi2",
runTime.timeName (),
mesh ,
I0object :: NO_READ
)

autoPtr<surfaceScalarField> phi2;
if (phi2Header.header0Ok())
{
Info<< "Reading phi2.\n" << endl;

phi2.set(new surfaceScalarField

(
I0object
(
"phi2",
runTime.timeName (),
mesh,

I0object::MUST_READ,

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

195

364
365
366
367

IOobject:: AUTO_WRITE
),
mesh

)

VII

Listing 257: The file createFields.H

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

196

Naming scheme old new

Phase a b 1 2
Volume fraction alpha beta alphal alpha2
Velocity Ua Ub U1 U2
Density rhoa rhob rhol rho2
Flux phia phib phil phi2

Table 6: Naming scheme of quanities of twoPhaseEulerFoam

Part VIII
Updates

36 General remarks

OpenFOAM is like any other open source project continuously updated. Those updates are integrated relatively
fast into the Git repository (e.g. OpenFOAM 2.1.x). In larger periods a new release of OpenFOAM is published
(e.g. OpenFOAM 2.1.1).

In the course of the creation of this document OpenFOAM evolves as well. In this chapter changes relevant
to this manual will be pointed out.

37 OpenFOAM
37.1 OpenFOAM-2.1.x

37.1.1 Naming scheme of two-phase solvers

The naming scheme of the two-phase solvers of OpenFOAM has been changed after the release of Version 2.1.1.
This change affected OpenFOAM-2.1.x around July 2012. The velocities used by two-phase solvers are now
named U1 and U2 instead of Ua and Ub. The volume fraction is consequently named alphal. Other variables,
e.g. density, also bear the number of the phase (rho! and rho2). Table 6 shows a selection of old and new
names. The bold names are the names of files in the 0-directory.

37.2 OpenFOAM-2.2.x
This section describes changes in behaviour or usage of OpenFOAM-2.2.x compared to OpenFOAM-2.1.x.

37.2.1 fvOptions

The fvOptions mechanism is an abstraction to allow for a generic treatment of physical models. See http:
//www.openfoam.org/version2.2.0/fv0ptions.php.

37.2.2 postProcessing

The data generated by a probes function object or by the sample utility is now stored in a folder named
postProcessing. This folder then contains a directory with the same name as the function object.

37.3 OpenFOAM-2.3.x

Although this manual is based on OpenFOAM-2.1 and OpenFOAM-2.2 this section lists some major differences
to OpenFOAM-2.3.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vil Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

http://www.openfoam.org/version2.2.0/fvOptions.php
http://www.openfoam.org/version2.2.0/fvOptions.php

37.3.1 twoPhaseFulerFoam

There have been major changes with the two-phase Eulerian solver twoPhaseEulerFoam. Simulation cases of
OpenFOAM-2.1 or OpenFOAM-2.2 are not directly usable in OpenFOAM-2.3.
See Sections 25 and 26 on details about the twoPhaseEulerFoam solver.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Vi Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

198

© 0 N e U oA W N e

=
= o

Part IX
Source Code & Programming

38 Understanding some C and C++4

In this Section some features of the C++ programming language are discussed.

38.1 Definition vs. Declaration

In C and C++ there is the destinction between the declaration and the definition of a variable. Briefly explained,
declaring a variable only tells the compiler that the variable exists and has a certain type. The declaration does
not specify what the variable actually is.

A definition also tells the compiler what exactly a variable is. This does not necessarily mean that the
variable is assigned a value.

Further information on that matter can be found in [45, 27] or http://www.cprogramming.com/declare_
vs_define.html.

38.1.1 A classy example

In Listing 258 we define the class phaseInterface, i.e. we tell the compiler what the class looks like (data
members, methods, etc.). Within the class phaseInterface we want to use the class phaseModel. This class
already exists and is defined elsewhere, so there is no need for us to repeatedly define the class phaseModel.
Creating our own definition of phaseModel would be useless and stupid.

To be able to use the existing class phaseModel we need to introduce this class to the compiler. In Line 4
of Listing 258 we do exactly this. We tell the compiler, that there is a class named phaseModel, that is all the
information needed by now. This is sometimes referred to as forward declaration.

When we compile our class we need to make sure that we include the definition of phaseModel, e.g. via
linking to the library in which phaseModel is defined.

namespace Foam

{
class phaseModel;
class phaselnterface
{

// lots of C++ code
};

}

Listing 258: Declaration and definition of classes

38.2 Namespaces

Namespaces are a feature of C++ to support a logical structure within the program. The basic idea behind
namespaces put in simple words is to keep things (variables and functions) visible where they need to be visible.
Like any other method of keeping things neat and tidy you could also survive without namespaces. However,
to loosely quote Prof. Jasak, one of the founders of OpenFOAM: OpenFOAM is an example of how to make
proper use of C++. Therefore, we have a closer look on namespaces in OpenFOAM.

General information about the concept of namespaces can be found here:

e http://www.cplusplus.com/doc/tutorial/namespaces/
e http://www.cprogramming.com/tutorial/namespaces.html
e http://www.learncpp.com/cpp-tutorial/711l-namespaces/

Some OpenFOAM specific aspects related to namespaces are discussed in Section 39.2.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

199

http://www.cprogramming.com/declare_vs_define.html
http://www.cprogramming.com/declare_vs_define.html
http://www.cplusplus.com/doc/tutorial/namespaces/
http://www.cprogramming.com/tutorial/namespaces.html
http://www.learncpp.com/cpp-tutorial/711-namespaces/

38.3 const correctness

The const keyword has several uses and using const has some implications.

38.3.1 Constant variables

This is the most easy part. Any variable can be declared constant by using the const keyword. This can
precede the datatype or the variable name. Both lines in Listing 259 are correct statements.

const int limit = 5;
int const answer = 42;

Listing 259: Constant variables

38.3.2 Constants and pointers
Pointing to a constant

A pointer can be used to point to a constant variable. The pointer itself is not constant and therefore change-
able. However, the keyword const has to be used when declaring a pointer pointing to a constant variable.
However, a pointer pointing to a constant can also point to a non-constant variable.

int const constVarl = 42;

const int constVar2 = 13;

int variable = 11;

const int* pointer = &constVarl;

std::cout << "The pointer points to " << *pointer << std::endl;

// change the pointer
pointer = &constVar2;

std::cout << "The pointer points to " << *pointer << std::endl;

// point to a non-constant
pointer = &variable;

std::cout << "The pointer points to " << *pointer << std::endl;

Listing 260: Pointing to constant variables

The pointer points to 42
The pointer points to 13
The pointer points to 11

Listing 261: Output of Listing 260

A constant pointer

A pointer can be constant regardless of the variable it points to. So, the address stored in the pointer can not
be changed, the pointer will always point to the same variable. However, the variable itself can be altered.
Listing 262 shows an example.

int variable = 11;
int* const constPointerl = &variable;
std::cout << "The constant pointer points to " << *constPointerl << std::emndl;
variable = 79;
std::cout << "The constant pointer points to " << *constPointerl << std::emndl;
Listing 262: Using constant pointers
IX This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 200

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

The constant pointer points to 11
The constant pointer points to 79

Listing 263: Output of Listing 262

A constant pointer to a constant

It is also possible to create a constant pointer pointing to a constant variable.

However, the last line of Listing 264 seems a bit unlogical but it isn’t. To get the meaning of this line
correctly, we need to read the left hand side of the assignment from right to left. First of all constpointer4
is the name of the new variable. Secondly, int* const tells the compiler that the new variable is a constant
pointer to an integer. This means, that the pointer itself — the location it points to — can not be changed. The
last statement const at the very beginning of the line, means, that the variable the pointer points to can not
be changed. However, variable is not a constant, so it can be altered anyway. The last line of Listing 264
does not change the nature of the variable variable, but it restricts the pointer to read-only operations. So,
variable can be changed, but not using constPointer4.

int const constVarl = 42;
int variable = 11;

const int* const constPointer2 = &constVarl;
const int* const constPointer4 = &variable;

Listing 264: A constant pointer to a constant

38.4 Function inlining
Motivation

Functions that carry out only a small number of operations are not very efficient, because the function call
might take more time than the execution of all the operations. Especially if such a function is often called, the
performance of the program suffers. However, writing functions is a good way to keep the code tidy.

On the one hand, functions enable the programmer to seperate code in a logical way. Code that is written
for a specific task is outsourced into a function with a hopefully meaningful name. This improved readability
and maintainability of the code.

One the other hand is writing functions a proper way to avoid code redundancy. Tasks that are carried out
repeatedly are best put into a function. Therefore, the code has to be written only once and the function can
be used wherever it is necessary.

The inline statement

The solution for this conflict is function inlining. The inline statement allowes the compiler to replace the
function call with the function body, i.e. the operations performed by the function. This enables the programmer
to keep the code tidy without the disadvantage of wasting time for time consuming function calls.

Listing 265 shows the definition of an inline function. The function body contains only two logical oper-
ations. The inline statement precedes the data type of the return value. So, writing inline functions is not
different than writing ordinary functions.

inline bool Foam::pimpleControl::finallter() const

{

return converged_ || (corr_ == nCorrPIMPLE_);

}

Listing 265: The definition of an inline function

The use of the inline statement does not guarantee that the compiler replaces the function call. This depends
on the compiler and the compiler settings.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

© 0 N e oA W N R

[e S N T
0 N O U A W N = O

OpenFOAM specifics

The OpenFOAM Code Style Guide (http://www.openfoam.org/contrib/code-style.php) demands from
programmers to seperate the definition of inline and non-inline functions.

Use inline functions where appropriate in a separate classNamel. H file.

Listing 266 shows the contents of the folder pimpleControl. Dividing the code of a program or a module
into *.C and the *.H file is the common way to seperate declarations from the rest of the program. The *.dep
file is generated by the compiler during compilation. The fourth file in the folder is a second header file as
demanded by the Code Style Guide. Listing 265 is a part of pimpleControlI.H.

pimpleControl.C pimpleControl.dep pimpleControl.H pimpleControlI.H

Listing 266: Content of the folder pimpleControl

38.5 Constructor (de)construction

In object oriented programming (OOP) everything is an object. All object are created by a constructor and if
necessary destroyed by a destructor.

38.5.1 General syntax

The constructor is a method of a class like any other function or method?’. However, the constructor is bound
to comply some rules.

e The constructor always has the same name as its class
e The constructor has no return value

Listing 267 shows a simple class describing a point in a two-dimensional domain. This class has two construc-
tors. The first constructor receives no arguments and initialises the member variables with zero. The second
constructor receives two integer variables as arguments and uses this variables to initialize the member variables
xPos and yPos.

Writing two or more constructors is possible because C++ supports function overloading. This means there
can be several functions with the same name differing in the input arguments.

class Point
{
int xPos;
int yPos;

public:

Point ()

{
/* constructor code */
xPos = 0;
yPos = 0;

}

Point (int x, int y)

{
xPos
yPos

}

X5

¥y

};

Listing 267: A class for a 2D point

90The terms function and method are used interchangeably. However, the method indicates the use of object oriented program-
ming. The term function is also used in procedural programming and does not automatically indicate the use of OOP.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 202

http://www.openfoam.org/contrib/code-style.php

Lo N N

[T O VC R R

© 0 N o U A W N e

=
= o

Listing 268 demonstrates hot to create new variables of the type Point. The first line creates a variable of
the type Point. Because no arguments are passed in this line, the first constructor of Listing 267 is called by
the compiler.

The second line creates also a point. The numbers inside the parenthesis are passed to the constructor.
Therefore the second constructor of Listing 267 is called and the member variables are initialised based on the
arguments.

Point pi1;
Point p2(3, 8);

Listing 268: Using the class for a 2D point

38.5.2 Copy-Constructor

The copy constructor is used to create a copy of an object. The C++ compiler will create a default copy con-
structor if the programmer does not write one. However, the default copy constructor has restrictions regarding
the handling of complex classes.

Point::Point (Point & p)

{
/* copy constructor code */
xPos = p.xPos;
yPos = p.yPos;

}

Listing 269: The copy constructor for the 2D point class

Hiding the copy constructor

A copy constructor can be hidden. Therefore, no copying is allowed. To do so, the copy constructor must be
defined using a private modifier.

Listing 270 shows a simple example of a copy constructor that is declared as private. This means the copy
constructor can only be called from within the class itself, i.e. only within the class Point.

Listing 271 shows an example from within the source code of OpenFOAM. There, the copy constructor of
the class turbulenceModel is hidden by declaring it private.

class Point
{
private:
Point (Point & p);
3

Listing 270: Hiding the copy constructor

class turbulenceModel

public reglOobject
{
private:
// Private Member Functions

//- Disallow default bitwise copy construct
turbulenceModel (const turbulenceModelk) ;

/* code continues */

Listing 271: Hiding the copy constructor

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 203

© o N e oA W N R

R e
S © ® N & G A W = O

38.5.3 Initialisation list

A class in C++ can have member variables of any type. Complex classes may need some kind of initialisation
to ensure all variables have a defined state. When an instance of a class is created by the constructor, the
initialisation list contains all statements to initialise member variables of the class.

Listing 272 shows a simple example of a constructor with an initialisation list. Listing 361 in Section 44.2.2
shows an usage example of an initialisation list in the OpenFOAM sources.

class Rectangle

{
Point topLeft;
Point bottomRight;

public:
Rectangle ()
{
topLeft = Point();
bottomRight = Point ();
}

Rectangle (Point a, Point b)

topLeft(a),
bottomRight (b)

{
/* constructor code */

}

Listing 272: A constructor with an initialisation list

38.6 Object orientation
38.6.1 Abstract classes

See Section 39.8 for a discussion about the implementation of the generic turbulence models in OpenFOAM.
This generic turbulence modelling makes heavy use of abstract classes and inheritance.

38.7 Templates

OpenFOAM makes heavy”!, clever use of templates. Templates are a language feature of C+4 that allow for
generic programming. An illustrative example for the use of templates in programming is the implementation
of container classes, e.g. linked lists. Without the use templates, the multiplicity of possible container contents
would force us to implement a vast number of specialized classes, e.g. nodeList, faceList and cellList for
lists of nodes, faces and cells.

Such a problem could be solved by the use of multiple inheritance. This way, we would need to implement
one base class for a list. The specialized classes would then inherit from the base list class and from the class
of the intended content. This solution, however, has several disadvantages [4]. As complexity grows, the path
via multiple inheritance is doomed to become a problem in its own, instead of alleviating or solving the original
problem.

Templates offer us a way to tell a class: use the type T, which can be any type the compiler allows. Thus,
we create one templated container class. Later, when we need to create lists of nodes, faces and cells, we tell
the compiler to substitute T for the concrete types. The compiler then generates the appropriate code. Checks
done by the compiler ensure, that specializing a valid templated class produces little to no surprises.

Listing 273 shows the use of templates. We first implement a generic list. Later, we specialize this list for
the types of nodes, faces and cells. The typedef instruction allows us to define a conveniant name. Once this
names are defined, we may even stop being aware that we are using a templated class.

91The command find $FOAM_SRC -name ’*.[CH]’ | xargs grep ’template’ | wc yields 24646 occurances of the word template
in $FOAM_SRC. This makes 12323 occurances within the source code itself — remember the presence and the use of the 1nInclude
directories.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 204

template <class T>
class list
{
// define a list of type T
}

typedef list<node> nodelist;
typedef list<face> facelist;
typedef list<cell> celllist;

Listing 273: Templated lists

OpenFOAM follows a similar strategy, who would guess from the top-level code, that volScalarField is in
fact a templated class with three template parameters, see Listing reflst:volScalarField. Besides being a more
convenient name®? we also save a lot of typing effort due to the shorter name“3. The use of type definitions
— typedef statements — is not mere convencience. Using the full specialisation of GeometricField instead
of volScalarField translates to hardcoding. If the developers of OpenFOAM, at some point, decide to base
volScalarField on the class smartScalar instead of scalar, only one line of code needs to be changed instead
of thousands. Thus, the use of typedefs strongs supports code readability and maintainability [4].

typedef GeometricField<scalar, fvPatchField, volMesh> volScalarField;

Listing 274: The typedef defining volScalarField

38.7.1 Use of templates by OpenFOAM

Since this document is not a book on any specific topic, certain topics are adressed in a manner ranging from
structured to completely random. Templates have already been discussed in a number of sections, mostly de-
scribing the use of templates on specific code examples. Since, there is no fun and varying benefit in restructuring
a large document, we will give pointers to other sections in which templates are discussed:

We discuss the use of templates in Section 19.1 where we compare the implementation of turbulence modelling
in OpenFOAM. There is a non-templated implementation, which was superseded by a templated one starting
from the release of OpenFOAM-2.3.0.

We discuss the use of templates in Section 22 where we take a look at the implementation of Lagrangian
particle tracking with a little excursion to the topic of linked lists.

The use of templates is also discussed in Section 39.3.2 at the example of keyword lookup from dictionary
files.

38.7.2 Do not fear the template
The syntax for templated code is different from the syntax encountered in non-templated code. Here we will
discuss some features of templated code, which may seem mysterious to the novice.

Template template parameter

In the introduction of this section, we stated, that the template parameter T is a placeholder for a concrete
type. However, the template parameter may itself be a templated class. A templated template parameter is
referred to as template template parameter. We could avoid using template template parameters, however, they
help us to avoid code duplication and lead to safer code [4].

39 Under the hood of OpenFOAM

This section contains short code examples that in some way explain the behaviour of OpenFOAM in certain
situations. All examples in this section are motivated by other parts of this manual. In some cases the source
code of some applications is examined somewhere else.

92yo01ScalarField field carries roughly the same essential information as GeometricField<scalar, fvPatchField, volMesh>.

93We count 15 versus 46 characters. With the command find $FOAM_SRC -name ’*.[CH]’ | xargs grep ’volScalarField’ |
wc we count 8752 occurances of volScalarField in the source code of OpenFOAM-dev at the time of writing. This leads to an
estimated 4376 occurances in the code itself.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

205

S

39.1 Solver algorithms
See Sections 23, 24 and 25 in Part V.

39.2 Namespaces
39.2.1 Constants

Physics is full of constants. Therefore it would be nice to have a central location in which physical or mathe-
matical constants are defined. OpenFOAM provides constants within the namespace Foam: : constant. There
the pre-defined constants are divided into the groups, such as

e electromagnetic

— muO - the magnetic permeability of vacuum

— epsilonO - the electcial permittivity of vacuum
¢ physicoChemical

— R - the universal gas constant
o mathematical

—pi-m

— e - the Euler number

In Listing 275 it is demonstrated how to access the constant pi within the source code. Listing 276 shows all
the mathematical constants defined in OpenFOAM-2.2.x. From a computational performance point of view it
makes perfect sense to pre-define often used constants such as two pi. Also note that instead of diving pi by 2.0
it is multiplied with 0.5. Mathematically these operations are equivalent, however, in terms of computational
cost the floating point multiplication is to be preferred over the floating point division as it is much faster [1].

Also note that OpenFOAM does not define e and 7 on its own, it rather uses the constants provided by the
system library. See e.g. http://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.
html for the mathematical constants provided by the GNU C library (glibc). Thus e and pi are defined by
accessing M_E and M_PI.

Further note that the constants are declared with the const specifier, which is the only sane way to define
constants in C and C++.

scalar foo = constant::mathematical::pi;

Listing 275: A useless code example demonstrating the access to m with OpenFOAM’s source code

const scalar e(M_E);

const scalar pi(M_PI);

const scalar twoPi (2%pi);
const scalar piByTwo (0.5%pi);

Listing 276: The mathematical constants provided by mathematicalConstants.H

In the FOAM-extend the access to e.g. the mathematical constants works the same way. Only the namespace
is named mathematicalConstants instead of constant: :mathematical. This is due to the fact that FOAM-
extend is largely based on OpenFOAM-1.6.

39.3 Keyword lookup from dictionary

There are generally two kinds of keywords in a dictionary. There are mandatory keywords and optional ones.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 206

http://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html
http://www.gnu.org/software/libc/manual/html_node/Mathematical-Constants.html

[SA T SE C R VR

© W N e G A W N =

W oW W oW ONN NN NNNNNN SRR R e e e e e e
© R = O VWO GRE DN RO © KN oA W N = O

39.3.1 Mandatory keywords

When a mandatory keyword is not found in a dictionary, OpenFOAM issues an error message and terminates.
Listing 277 shows the reading operation for three mandatory keywords. The function lookup() can be
examined further in Listing 278.

#include "readTimeControls.H"

int nAlphaCorr(readInt (pimple.dict().lookup("nAlphaCorr")));
int nAlphaSubCycles(readInt (pimple.dict().lookup("nAlphaSubCycles")));
Switch correctAlpha(pimple.dict().lookup("correctAlpha"));

Listing 277: The content of readTwoPhaseEulerFoamControls.H

The code

Line 32 in Listing 278 shows, that the function lookup() simply calls value of lookupEntry (). This method
also calls another method (lookupEntryPtr()) and does the error handling. The error handling routine clearly
shows, that OpenFOAM will terminate in case the keyword wasn’t found (see line 19).

const Foam::entry& Foam::dictionary::lookupEntry
(

const word& keyword,

bool recursive,

bool patternMatch

) const
{
const entry* entryPtr = lookupEntryPtr (keyword, recursive, patternMatch);
if (entryPtr == NULL)
{
FatalIOErrorIn
(
"dictionary::lookupEntry(const word&, bool, bool) comnst",
*this
)
<< "keyword " << keyword << " is undefined in dictionary "
<< name ()
<< exit (FatalIOError);
}
return *entryPtr;
}

Foam::ITstream& Foam::dictionary::lookup
(

const word& keyword,

bool recursive,

bool patternMatch
) const

return lookupEntry(keyword, recursive, patternMatch).stream();

Listing 278: Some content of dictionary.C

39.3.2 Optional keywords

A method that is used to read an optional keyword from a dictionary is usually provided with a default value.
This default value is used in the case that the keyword is non-existent in the dictionary.

Listing 279 shows the reading operation for three optional keywords. The read function is called with two
arguments. The first is the keyword and the second is the default value. If the function lookupOrDefault ()
finds no entry, then the default value is returned.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

S

o o

© 0 N O U A W N e

R T
S © ® N o oA W N~ O

N

o N o

const bool adjustTimeStep =
runTime.controlDict () .lookupOrDefault("adjustTimeStep", false);
scalar maxCo =
runTime.controlDict () .lookupOrDefault<scalar>("maxCo", 1.0);
scalar maxDeltaT =
runTime.controlDict () .lookupOrDefault<scalar>("maxDeltaT", GREAT);
Listing 279: The content of readTimeControls.H
The code

Listing 280 shows the definition of the function lookupOrDefault (). This function also calls another function
to lookup the keyword — actually it looks for the value assigned to the specified keyword in the dictionary —
and enters a conditional branch. In case the keyword was found, the corresponding value is returned (line 14).
If the keyword was not found, then the default value is returned (line 18).

In Listing 280 the function is defined with four input arguments. However, in Listing 279 this function is
called with only two arguments.

The solution for this contradiction can be found in the file dictionary.H, where this function is declared.
This declaration can also be found in Listing 281. There, in lines 6 and 7, default values for two arguments are
specified. Therefore, the function can be called with only two arguments — with the two arguments that have
no default value?. If the function is called with all its arguments, the passed argument overrides the default
value.

When declaring a function that uses default values for its arguments, the arguments without default value
must precede the arguments that have a default value. Otherwise, there could be ambiguity.

template<class T>

T Foam::dictionary::lookupOrDefault
(

const word& keyword,

const T& deflt,

bool recursive,

bool patternMatch

const

~

const entry* entryPtr = lookupEntryPtr (keyword, recursive, patternMatch);

if (entryPtr)
{
return pTraits<T>(entryPtr->stream());
}
else
{
return deflt;
}
}

Listing 280: Some content of dictionaryTemplates.C

template<class T>
T lookupOrDefault
(
const wordé&,
const T&,
bool recursive=false,
bool patternMatch=true
) const;

Listing 281: Some content of dictionary.H

94The function could also be called with three argmuents, then the default value of the third argument would be overridden and
the fourth argument would have its default value.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 208

© o N e s W N R

e
o= O

© o N e U oA W N R

e
w N = O

39.4 OpenFOAM specific datatypes
39.4.1 The Switch datatype

A lot of settings in dictionaries are switches to activate or deactivate a feature. Listing 282 shows the part of
the source code defining all valid values. Inside the source code a switch can only be true or false, as the class
Switch is used as a boolean data type. However, in the dictionaries a switch can have more values — provided
they denote a decision. Human languages usually have more ways of answering a yes-no question, this may be
the motivation for allowing this range of values for switches.

// NB: values chosen such that bitwise ’&’ 0xl yields the bool value
// INVALID is also evaluates to false, but don’t rely on that
const char* Foam::Switch::names[Foam::Switch::INVALID+1] =

{
"false", "true",
noffM "on"
s s
llnoﬂ ||yesll
s 3
ot ny
s
llfll’ "t",
"none", "true", // is there a reasonable counterpart to "none"?
"invalid"
};

Listing 282: Some content of Switch.C

Listing 283 shows an example of how the Switch datatype can be used in the code. This example reads from
the transportProperties dictionary. If no valid entry named testSwitch is present, then the value of the
switch is set to false. Notice the second argument of the method lookupOrDefault (), it reads Switch(false).
This means, that a new object of the type Switch is created with the boolean value false being passed to the
constructor of the class Switch. This new object of type Switch is then used — if necessary — as default value
for the switch named testSwitch.

Switch testSwitch(transportProperties.lookupOrDefault<Switch>("testSwitch", Switch(false)));

Listing 283: Usage example of the Switch datatype

39.4.2 The label datatype

In nearly every program there is sometimes the need for a counter. When examining the solution algorithms,
like in Section 24.2, counters can be found. OpenFOAM uses a datatype called label for such counters, e.g.
see Listing 172.

The most obvious datatype for a counter would be the integer datatype. Listing 284 contains some lines of
the file 1abel.H, where this datatype is defined. Depending on system or compilation parameters, label is of
the type int, long or long long”.

Listing 284 shows the definition of label in case int is used as the underlying datatype.

namespace Foam

{
typedef int label;

static const label labelMin = INT_MIN;
static const label labelMax = INT_MAX;

inline label readLabel(Istream& is)
{
return readInt (is);

}

} // End namespace Foam

9In C as well as in C++ the domain of long is greater or equal than the domain of int. long long was defined in the C99
standard of C and was later introduced to the C++11 standard. The domain of long long is again larger or equal than the domain
of long. The type long long uses at least 64 bit. So it is on 64 bit systems the largest possible datatype. The datatype long can
use — depending on the compiler — 32 or 64 bit. The type long long guarantees the use of 64 bit.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

209

© 0 N o U oA W N e

L I T N o S S S Ty /g
AWM= O © N e kW N R O

¥
o

Listing 284: Some content of label.H

39.4.3 The tmp<> datatype

There is a special class for all temporary data. Because there is no memory management in C4++ the programmer
has to delete unused variables. The author assumes that the tmp class for all kinds of temporary data is meant
to distinguish temporary variables from other variables.

The tmp class uses a technique called generic programming.

39.4.4 The I0object datatype

The class I0object handles the behaviour of all kinds of data structures. Although, there are no variables of the
type I0object, understanding some parts of this class will help to understand certain aspects of OpenFOAM.

Listings 285 and 286 show some examples from the sources of the solver twoPhaseFulerFoam. There, the
class I0object is used in the creation of fields as well as the creation of dictionary objects.

In Listing 285 two volScalarField variables are created. The constructor of the class volScalarField
receives two arguments. In both cases the first argument is an I0object.

Let us read the arguments of the I0object constructor call. The first argument is the name of the I0object.
The two last arguments are the read and write flags.

In the case of the fields alphal and alpha2 the read and write flags are different. The field alphal is read
at the start of the application. The write flag causes the field alphal to be written to disk, whenever the data
is written. The field alpha2 on the contrary is not written to disk and the application also does not try to read
it.

The name of the I0object is also the name which the application uses as file name. Therefore the field
alphal will be written to disk in a file named alphal. Also when the application tries to read alphal, it tries
to read from the file alphal.

volScalarField alphal
(
I0object
(
"alphal",
runTime.timeName (),
mesh,
IOobject::MUST_READ,
I0object :: AUTO_WRITE
),
mesh

)

volScalarField alpha2
(
I0object
(
"alpha2",
runTime.timeName () ,
mesh,
I0object :: NO_READ,
I0object::NO_WRITE
),
scalar (1) - alphal

Listing 285: Definition of volume fraction fields in createFields.H

Listing 286 shows the definition of an I0dictionary. The constructor of the class I0dictionary receives
also an IOobject as argument. Again, the name of the I0object is also the name of the file the application
tries to read when reading in the dictionary. Notice also the read flag. This flag causes the application to check
if the file has been modified during run-time. If this is the case, the file will be read again.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 210

© o N e U oA W N R

T T S S SOy S P
B =S © W N A ® N = O

N N R S O

I0dictionary ppProperties
(
I0object
(
"ppProperties",
runTime.constant (),
mesh,
I0object::MUST_READ_IF_MODIFIED,
I0object::NO_WRITE

Listing 286: Definition of a dictionary in readPPProperties.H

Read & write flags

In the constructor so called read and write flags are provided as arguments, see e.g. Lines 8 and 9 of Listing
286.

Listing 287 shows the available read/write flags. The flag MUST_READ_IF_MODIFIED was introduced with
OpenFOAM-2.0.0%. The available read flags offer quite some flexibility.

//- Enumeration defining the valid states of an IOobject
enum objectState
{
GOooD,
BAD
};

//- Enumeration defining the read options
enum readOption

{
MUST_READ,
MUST_READ_IF_MODIFIED,
READ_IF_PRESENT,
NO_READ

};

//- Enumeration defining the write options
enum writeOption
{
AUTO_WRITE = 0,
NO_WRITE = 1

};

Listing 287: Definition of the object states and read/write flags of I0object in IOobject.H

Pitfall: Solving for a NO_READ field

The author stumbled across an interesting error during modifying a solver. This falls into the category copy &
paste error. However, the author wishes to share the experience.

If we like to extend an existing solver with a scalar transport equation, we need to create the field we want
to solve for, in our case a volScalarField. There are plenty of files from which we can copy the relevant code.
Listing 288 shows an example. The name of the field was changed as was the write flag. Since we want to create
colourful images, the write flags needs to be set to AUTO_WRITE. However, no care was taken of the read flag.

volScalarField T
(
I0object
(
w
runTime.timeName (),
mesh,

9nttp: //uww.openfoam.org/version2.0.0/runtime-control.php

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

http://www.openfoam.org/version2.0.0/runtime-control.php

10
11
12
13

I0object::NO_READ,
IOobject:: AUTO_WRITE
),
mesh,
dimensionedScalar ("zero", dimensionSet (0, 0, O, O, 0), 0.0)

Listing 288: Creating a field with an I0object: :NO_READ read flag.

After we created out field T, and composed the transport equation for this field (TEqn), we want to solve
this transport equation. However, the call TEqn.solve() yields some unexpected outcome. Listing 289 shows
the error message issued by OpenFOAM.

--> FOAM FATAL ERROR:
valueInternalCoeffs cannot be called for a calculatedFvPatchField

on patch inlet of field T in file "/home/user/OpenFO0AM/user-2.3.x/run/foo/case/0/T"
You are probably trying to solve for a field with a default boundary condition.

From function calculatedFvPatchField<Type>::valuelnternalCoeffs (const tmp<scalarField>&)
const

in file fields/fvPatchFields/basic/calculated/calculatedFvPatchField.C at line 154.

FOAM exiting

Listing 289: Error message of OpenFOAM caused by trying to solve for a no-read field.

At first, the message seems counter-intuitive, since we checked the boundary conditions in the file T over
and over. Also changing the boundary conditions does not produce a different outcome.

The error message says, we wanted to solve for a field with default boundary conditions. This is perfectly
true, however, we need to find out why. Since, we created the field with a NO_READ flag, no boundary conditions
were provided. Thus, OpenFOAM assigns default boundary conditions. This is also the case if we leave patches
in the boundaryField dictionary of the files that are read from disk.

Continued Problems

Changing the read flag in Listing 288 alone does not solve the problem. Changing the read flag from NO_READ
to MUST_READ yields the same error message as in Listing 289.

The reason for this are the arguments of the constructor call in Listing 288. If a field is to be read from
disk, we must not pass a value (Line 12 in Listing 288).

For our modified solver to work, we need to remove the argument passed in Line 12 in Listing 288. The
developers of OpenFOAM have forseen this case, thus OpenFOAM issues a warning message, when a value is
passed to a constructor with a MUST_READ or MUST_READ_IF_MODIFIED read flag, see Listing 290.

--> FOAM Warning
From function GeometricField<Type, PatchField, GeoMesh>::readIfPresent ()
in file /home/user/OpenF0AM/OpenF0AM-2.3.x/src/0OpenFO0AM/1nInclude/GeometricField.C at line
108
read option IOobject::MUST_READ or MUST_READ_IF_MODIFIED suggests that
a read constructor for field T would be more appropriate.

Listing 290: Warning message of OpenFOAM caused by inappropriate constructor arguments concerning read
flags and initial values.

39.4.5 Random stuff

OpenFOAM features a random number generator (RNG). The generated numbers within the sequence itself —
depending on the quality of the algorithm — are close to being random. Random number generators on computers
are also referred to as pseudo-random number generators as they are generally deterministic. Otherwise, nobody
would be able to write code for such random number generators.

The randomness enters the scene in the form of the initial state of the random number generator, also known
as seed. Choosing a non-constant seed value is key to obtain good random numbers. Using a constant seed value

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

212

[TS TN T SO R O

[>T T~ N RSO VR O

S

o N o

— using the same value each time the application is run — leads to an ever-recurring random number sequence,
i.e. for the same initial conditions the RNG generates the same sequence of numbers.

The good, the bad and the ugly — in reverse order

The worst thing to do is to use a constant value for seeding the RNG. In Listing 291 we use zero als seed value.
This value is equal every time we run the application. Thus, it comes as no suprise, when the random numbers
we print to the Terminal are always the same, i.e. we print the same sequence of 20 numbers between one and
a hundred every time we run the application containing the code of Listing 291.

// random stuff
#include "Random.H"
Random ranGen (0) ;

for (int j = 0; j < 20; j++)
{

Info << ranGen.integer (1, 100) << endl;
}

Listing 291: A simple test for random numbers; the ugly.

In order to obtain different sequences, we need to choose a better seed value. In fact, we need to choose a
seed value that is different every time we run our application. The time would be a perfect example for such a
seed value. However, we need to make errors in order to learn something. In the sources, we came across the
method osRandomInteger (). This sounds great, use a random number to seed a random number generator.
On a second thought, this sounds more of a chicken-egg problems, but let’s continue.

So we implement the code of Listing 292, which is simply a different seed value. However, when we run the
code, we find out, that we obtain the same sequences over and over, just as in the previous case.

Digging into the code, we find out, that osRandomInteger () uses the random number generator provided
by POSIX. However, there seems to be no proper seeding of the POSIX random number generator.

// random stuff
#include "Random.H"
Random ranGen(osRandomInteger ());

for (int j = 0; j < 20; j++)
{

Info << ranGen.integer (1, 100) << endl;
}

Listing 292: A simple test for random numbers, the bad.

As mentioned above, the time is the perfect seed value. However, since we are now at the good solution,
we need something other than time. In Listing 293, we use the PID of the application as the seed value for the
RNG. The PID is unlikely to be equal when the application is run several times. In fact, the kernel of the OS
assigns the PIDs sequentially from a range of integer numbers, e.g. on the authors Linux machine the PID of
a process is in the range between 1 and 32768. If the end of the number range is reached, the kernel starts all
over, skipping numbers which are still in use. Furthermore, the PID is guaranteed to be different, when running
an application in parallel, i.e. all the sub-processes have a unique PID.

// random stuff
#include "Random.H"
Random ranGen(pid());

for (int j = 0; j < 20; j++)

{
Info << ranGen.integer (1, 100) << endl;
}
Listing 293: A simple test for random numbers; the good.
IX This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 9213

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

© 0 N o U e W N e

© 0 N e U A W N e

[N N VI

The even better

As already mentioned, using the time gives us a different seed value every time, the application is run. The
method getTime () returns the number of seconds that have passed since January, 15¢ 1970. The code of Listing
294 now yields different number sequences every time we run the application. Also, PID-reuse is also not an
issue anymore, since, whenever a PID gets reused, the time is certainly different. As we use the time to seed the
RNG, the year 2038 problem®” is a non-issue to us, since we are only interested in unique values rather than
correct representation of time.

// random stuff

#include "Random.H"

#include "clock.H"

Random ranGen(clock::getTime());

for (int j = 0; j < 20; j++)
{
Info << ranGen.integer (1, 100) << endl;

}

Listing 294: A simple test for random numbers; the even better.

The perfect

The solution above is nearly perfect, the only issue left is running in parallel. This might seem a non-issue when
we just want to implement random numbers for an application we only will use in serial. However, the trick is
rather easy.

We use the current time as seed value and add the PID. This will ensure, that when multiple processes are
spawned at the same time, when starting a parallel run, each process has its unique seed value thanks to the
contribution of the PID.

// random stuff

#include "Random.H"

#include "clock.H"

Random ranGen(clock::getTime ()+pid());

for (int j = 0; j < 20; j++)
{

Info << ranGen.integer (1, 100) << endl;
}

Listing 295: A simple test for random numbers; the perfect.

39.5 Time management

39.5.1 Time stepping

Transient solvers solve the governing equations each time step at least once. Depending on the solution algorithm
there are several inner iterations (iterations within a time step) during one outer iteration.

pimpleFoam

Listing 296 shows the beginning of the main loop of pimpleFoam. After the three include instructions, the
runTime object is incremented. This means, the current time step is incremented to the next time step.

/* code removed for the sake of brevity */
Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

97https://en.wikipedia.org/wiki/Year_2038_problem

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

214

https://en.wikipedia.org/wiki/Year_2038_problem

10
11
12
13
14

15

© ® N s W N R

N e
B W N = O

© o N e s W N R

==
= o

N o oA W N e

#include "readTimeControls.H"
#include "CourantNo.H"
#include "setDeltaT.H"
runTime++;

Info<< "Time = " << runTime.timeName () << nl << endl;

/* code continues */

Listing 296: The beginning of the main loop of pimpleFoam in pimpleFoam.C

pisoFoam

Listing 297 shows the beginning of the main loop of pisoFoam.

/* code removed for the sake of brevity */
Info<< "\nStarting time loop\n" << endl;

while (runTime.loop())
{

Info<< "Time = " << runTime.timeName () << nl << endl;

#include "readPISOControls.H"
#include "CourantNo.H"

// Pressure-velocity PISO corrector

{

/* code continues */

Listing 297: The beginning of the main loop of pisoFoam in pisoFoam.C

There, there is no incrementation of any runTime object. The explanation for this, lies in the condition
of the while statement. In pisoFoam, the while statement is controlled by the return value of the function
call runTime.loop(). Whereas, in pimpleFoam, the while statement is controlled by the return value of the
function call runTime.run().

Let’s have a closer look on runTime.loop(). Listing 298 shows, that the function loop() calls the function
run() and then increments the runTime object by calling operator++().

The ++ operator of the Time class

Listing 299 shows the first lines of the definition of the ++ operator of the Time class. The last instruction of
Listing 299 set the time value to the current time value plus the time step.

bool Foam::Time::loop()
{

bool running = run();

if (running)
{
operator++();

}

return running;

Listing 298: The definition of the function loop() in Time.C

Foam::Time& Foam::Time::operator++()

{
deltaTO_ = deltaTSave_;
deltaTSave_ = deltaT_;
// Save o0ld time name
const word oldTimeName = dimensionedScalar::name();
IX This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 9215

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

10
11

o oA W N e

© o N e oA W N R

I e e e =
o U A W N = O

setTime (value () + deltaT_, timeIndex_ + 1);

/* code removed for the sake of brevity */

Listing 299: The definition of the operator ++ in Time.C

39.5.2 Setting the new time step

Transient simulations can be run with fixed and variable time steps. In a simulation with fixed time step the
time step is constant. The value of the time step must be set before the simulation is started. The time step
influences the accuracy and stability of the simulation. The value of the time step determines the time scales
that can be resolved in the simulation. Via the Courant-Friedrichs-Lewy (CFL) criterion the time step is linked
to the stability of the time integration method.

Most transient OpenFOAM solvers offer the possibility of transient simulations with variable time steps. The
user then provides the limits for the determination of the time steps. The most obvious limit is the maximum
time step maxDeltaT. This is the upper limit for the value of each new time step. This is the parameter for the
user to determine the time scale to be resolved.

The second limit for determining the time steps is the maximum Courant number. This parameters purpose
is to maintain stability of the numerical solution.

Listing 300 shows the code that reads the time controls. The first instruction reads the entry in controlDict
specifying whether to use variable time steps or not. This code is rather self-explanatory. If there is not entry in
controlDict then a fixed time step is used. The other two instructions read values for the maximum Courant
number and the maximum time step. The default value for the maximum Courant number is 1.0, which is the
limit for the explicit Euler time integration method.

const bool adjustTimeStep =
runTime.controlDict () .lookupOrDefault ("adjustTimeStep", false);
scalar maxCo =
runTime.controlDict () .lookupOrDefault<scalar>("maxCo", 1.0);
scalar maxDeltaT =
runTime.controlDict () .lookupOrDefault<scalar>("maxDeltaT", GREAT);

Listing 300: The content of the file readTimeControls.H

Determining the new time step

The value of the new time step has to obey both limit mentioned above, the maximum time step and the
maximum Courant number. In order to prevent oscillations the increase of the time step is damped. Listing
301 shows how the time step is computed each time step.

if (adjustTimeStep)

{
scalar maxDeltaTFact = maxCo/(CoNum + SMALL);
scalar deltaTFact = min(min(maxDeltaTFact, 1.0 + O.1*maxDeltaTFact), 1.2);
runTime.setDeltaT
(
min
(
deltaTFact*runTime.deltaTValue (),
maxDeltaT
)
);
Info<< "deltaT = " << runTime.deltaTValue() << endl;
}
Listing 301: The content of the file setDeltaT.H
IX This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 216

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Let us have a look on what the code is actually doing.

maxCo
maxDeltaTFact = —— — (135)
Co + SMALL
deltaTFact = min(min(maxDeltaTFact, 1.0 4+ 0.1 * maxDeltaTFact), 1.2) (136)

The scalar maxDeltaTFact (Line 3 in Listing 301 and Eq. (135)) is the relation between the maximum
Courant number and the current Courant number (see Section 39.5.4 on how the Courant number is determined).
The role of the constant SMALL is to prevent division by zero, which would cause the solver to crash.

The scalar deltaTFact is computed from maxDeltaTFact. This line of code (Line 4 and Eq. (136)) imple-
ments the damping, i.e. the rate of increase of the time step is limited. The nested use of two min() functions
determines the minimum of three values. The most obvious of these three values is the last argument. If this
value is the smallest, then the next time step is 20 % larger than the last one.

Eq. (136) shows the minimum of the first two arguments in a mathematical way. Figure 62 shows the
three arguments of Eq. (136). We use the symbol z for the scalar maxDeltaTFact. In Figure 62 the values
for = are greater than one. Eq. (138) elaborates why this is the case. x is the ratio of the maximum Courant
number Co,,4, and the current Courant number Co. As the current Courant number is always smaller than
the maximum Courant number we replace Co with fC0,,4., with f < 1. After cancelling C0,,,4, the inverse of
f remains. Thus z is always greater than one.

10
min(z, 1+ 0.1z) = s b (137)
1+01z =z><5
— = == 1
"STC0 " fCome 1 (138)
<1
Sr>1 (139)

1.5 I I I

— y==x
—y = 1+ 0.1
14} — y=12

1.2

1.1 =

| | | | | | | |
1 12 14 16 18 2 22 24 26 28 3
T

1

Figure 62: The three arguments of Eq. (136) plotted over z

The argument of the function setDeltaT() contains the abidance of the first limit, the maximum time step.
There the minimum of the newly calculated and the maximum time step is passed on.

39.5.3 A note on the passing of time

In this section we will take a closer look at the implementation of the Time class.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Class design

A quick glance at the file Time.H reveals some very interesting information on the nature of time, or more
precisely, the nature of the Time class. Listing 302 shows us, that the class Time class inherits from five base
classes”S.

class Time

public clock,
public cpuTime,
public TimePaths,
public objectRegistry,
public TimeState
{
/* class definition */

}

Listing 302: The information on inheritance of the Time class; an extract of Time.H.

The TimeState class

From Listing 302 we see that Time s a TimeState due to inheritance. In Listing 303 we see the information
on inheritance of the timeState class. There we see, that TimeState is ¢ dimensionedScalar.

class TimeState
public dimensionedScalar

/* class definition */

Listing 303: The information on inheritance of the TimeState class; an extract of TimeState.H.

Distinguishing between time steps

The fact that Time is a TimeState which in turn is a dimensionedScalar helps to understand the Lines 6, 13
and 21 of Listing 304. There, the name () method of the dimensionedScalar name space is called.

Foam::Time& Foam::Time::operator++()
{

// some code removed for brevity

// Save old time name
const word oldTimeName = dimensionedScalar::name();

setTime (value () + deltaT_, timelIndex_ + 1);
// some code removed for brevity

// Check that new time representation differs from old one

if (dimensionedScalar::name() == oldTimeName)
{

int oldPrecision = precision_;

do

{

precision_++;
setTime (value (), timeIndex());
}

while (precision_ < 100 && dimensionedScalar::name() == oldTimeName);

WarningIn("Time::operator++()")
<< "Increased the timePrecision from " << oldPrecision

98Literarily spoken, the Time class is not only Dr. Jekyll and Mr. Hyde, it is also Citizen Kane, Mrs. Robinson and the Tambourine
Man.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

218

25
26
27
28
29
30
31
32
33
34
35
36
37
38

40

S I

© o N o wu

[N N N R

<< " to " << precision_

<< " to distinguish between timeNames at time " << value()
<< endl;
if (precision_ == 100 && precision_ != oldPrecision)

{
// Reached limit.
WarningIn("Time::operator++()")
<< "Current time name " << dimensionedScalar::name ()

<< " is the old as the previous one " << oldTimeName
<< endl

<< " This might result in overwriting old results."
<< endl; }

}
// some code removed for brevity

}

Listing 304: The increment operator (++) of the Time class; an extract of Time.C.

From Line 23 to 27 of Listing 304 we see the code which generates the warning message we saw in Listing
33 in Section 8.3.2.

In Lines 21 and 29 we find the hard-coded limit for the time precision. If the time precision reaches a value
of 100, then it is no more increased.

Naming the time with precision

In Section 8.3.2 we saw that the value of the timePrecision can be a source of error. We will now elaborate
on the actual causes of this error.

Listing 305 shows the definition of the method timeName (const scalar). This method is used to create a
properly formatted time name® from a given scalar representing the time. In this method the time precision
comes into play in the form of the data member precision_, which is a static data field of the Time class with a
protected visibility. In this method the time value with high precision is converted to a string representation
(the time name) with limited precision'?’.

//- Return time name of given scalar time
Foam::word Foam::Time::timeName (const scalar t)

{
std::ostringstream buf;
buf .setf (ios_base::fmtflags (format_), ios_base::floatfield);
buf.precision(precision_);
buf << t;
return buf.str();
}

Listing 305: The method timeName (const scalar) of the class Time; an extract of Time.C. Note, that the
descriptive comment is taken from the header file Time.H.

When the time is advanced, e.g. using the increment operator of the Time class, the method setTime () is
called. Listing 306 shows the definition of this method. The new time value is passed to this method. In the
second instruction we see how the time name is updated to the new value!'°!.

void Foam::Time::setTime(const scalar newTime, const label newIndex)

{
value () = newTime;
dimensionedScalar::name() = timeName(timeToUserTime (newTime)) ;
timeIndex_ = newIndex;

}

99The data type of the return value of this method is word, which is a string data type of OpenFOAM. Thus, the time name is
a string representation of the time. It is important to note, that the string representation of the time is different than the actual
value of the time.

1001t js this method which creates the time name 0.102 from the time value 0.1023, when precision is set to three digits, as it is
the case in the example described in Section 8.3.2.

101The call of timeToUserTime() can be ignored. This method simply returns the passed value. This method has a non-trivial
implementation in the engineTime class, which keeps track of time in terms of engine RPM and crank-shaft angle. engineTime is
derived from Time.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

219

© 0 N O U A W N e

e T e e s
® N o oA W N = O

Listing 306: The method setTime () of the class Time; an extract of Time.C.

The method setTime () gets called e.g. by the operator * of the Time class, see Line 8 of Listing 304. There,
the time index is increased by one. From the header file of the TimeState class, we see, that the time index
is of the data type label, which is essentially an integer data type. Thus, we see, that the time index is a
consecutive number counting the time steps.

39.5.4 The Courant number

The Courant number Co is the ratio of the time step At and the characteristic convection time scale “/Az. Eq.
(140) shows the definition of the Courant number. However in a practical CFD code the Courant number will be
computed in a slightly different way. Eq. (141) shows how Eq. (140) is expanded with 4/A to gain a formulation
featuring the flux and the volume of the control volume instead of the velocity and the discretisation length.
Eq. (142) shows the extension of Eq. (141) for a one-dimensional finite volume formulation. The mean of the
fluxes of the faces E and W defines the convective time scale. This definition seems obvious in some way in
the one-dimensional case. For two or three-dimensional cases the choice of how to define the characteristic flux
seems not straight forward.

uAt
_ult 14
Co A o
ulAt uAtA pAt
o= Rt T Ar AT AV o
leelZlowine 1 (Jop| — [ow) At
J— 2 = = 2 =

The Courant number in OpenFOAM

In OpenFOAM the Courant number is computed for all cells. In fact OpenFOAM computes a maximum
Courant number, i.e. the largest Courant number of all cells, and a mean Courant number, i.e. the mean
Courant number of all cells.

Listing 307 shows the code responsible for computing the Courant number. Line 8 of Listing 307 translates
to Eq. (143). sumPhi is a scalar field containing the sum of the magnitudes of all face fluxes of every cell, i.e.
for each cell the magnitude of the face fluxes are summed up. Eq. (143) holds for every cell.

Eq. (144) is the mathematical representation of line 11. There the maximum value of the ratio between the
values of sumPhi and the cell volume is determined. Both variables sumPhi and mesh.V() contain values for
every cell. Therefore the gMax () function returns the maximum value.

Eq. (145) represents line 14.

scalar CoNum = 0.0;

scalar meanCoNum 0.0;

if (mesh.nInternalFaces ())

{
scalarField sumPhi
(
fvc::surfaceSum(mag(phi)) () .internalField ()
)
CoNum = 0.5*gMax(sumPhi/mesh.V().field())*runTime.deltaTValue();
meanCoNum =
0.5%(gSum (sumPhi)/gSum(mesh.V().field()))*runTime.deltaTValue () ;
}
Info<< "Courant Number mean: " << meanCoNum
<< " max: " << CoNum << endl;
Listing 307: The content of the file CourantNo.H
IX This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 990

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

sumPhi = Y |¢y,| (143)

fi
1 sumPhi
— 144
cotm = 5., (371") o .
15" sumPhi
meanCoNum = - =——— At 145
2 > Veeu (145)

Discussion

The way to compute the Courant number in a three dimensional case is not straight forward as mentioned
above. This section reflects the authors way of understanding. So there is no guarantee of validity. The factor
of 1/2 and the summation of ¢y, is explained by the author as follows.

We base our reflections on a two dimensional control volume. Eq. (147) shows the summation written in
the long form. This equation is then rearranged to yield Eq. (148). In Eq. (148) the summation is reduced to
two terms. These terms are the arithmetic mean of the face flux in the principal directions N — S and W — E.
This summation is then identified as the L; norm of the mean face fluxes in the principal directions.

The reason for choosing the L1 norm is not self-evident. In any case is the L; norm computationally cheaper
than the Euklidian or Ly norm. However, the use of the L; norm seems justified since it measures the distance
covered by a movement, see http://en.wikipedia.org/wiki/Taxicab_geometry.

1 Zf- ¢fi
Co=-—""""At 146
2 Veeu (146)
1
Co = Lonl+ 0Bl +[ds[+|ow] (147)
2 Vcell
PN |+]os| + |¢E|+|dw |
Co= —-2 2 At 148
Veell (148)
—NS —WE
co— lol_Flel (149)
Veeur
(e
Co=—F——""At 150
Veelr (150)
We indroduce the following symbols
1 —x;
5 2ol =116l Il = |12l (151)
fi
P
Co= 12l 5y (152)
Veell
The way the mean Courant number is computed seems incorrect at the first glance but it isn’t.
[[lx
Co=—-At 152
Veeur (152)
The mean value of the quantity z is defined as follows
1N
T= > (153)
i=1
IX This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 991

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

http://en.wikipedia.org/wiki/Taxicab_geometry

Next we write the mean value of the Courant number. An unmarked summation is a summation over all cells.

oo Ly (18 s 50

cell

— 1 > Ve 1@ (||<I’|1)
Co=— At 155
N Zv('ell ZH‘I)Hl Z Veelt (185)

1 —1

2Pl 1 Y Veeu (||¢’||1)
Co E At 156
" S Ve NY |21 Veell (156)

X

Eq. (156) now resembles Eq. (145). Now we concentrate on the term X which is the only difference between
Eqns. (156) and (145).

1> Veen <||‘1>||1)
X =— 157
N STl 2\ Ve (157)
Zvcell 1 Z <||(I)||1>
NSl 2\ Ve
=Vcell

Vi ([l
ZMhZ<) (159)

cell

1 s
* - Z¢MZ<ﬁJ (160)

cell

o
i
2

—_

We assume X

cell

_ 1 [|®]1
X‘zwhz<1> (161

D »I [T
@l

Thus we have shown that the way the mean Courant number meanCoNum is computed is actually the mean
Courant number Co. However, this attempt of a proof is based on some assumptions.

First, the way the author explains the meaning of the summation of the face fluxes relies on hexahedral
cells. The argument made seems not to be applicable on tetrahedral cells. Secondly, the assumption % S

(162)

is valid for homogeneous grids. For a uniform grid this assumption would be ideally fulfilled. If the VOlclellILne of
the largest and smallest cells differs a lot this assumption is not justified.

Some thoughts on the computational costs

Why the formula for the mean Courant number is rearranged from

NZ <||<I>|I1> (163)

cell

to

— d
o Zlel

> Veeur (164)

is unknown to the author.

It is the opinion of the author that this is made for reasons of computational cost. Two times the summation
over all values of a field plus one division is computationally cheaper than an elementwise division of two fields
and one subsequent summation over all elements of the resulting field.

This would be the case if the division operation takes more time than the summation operation which is
very likely the case. Depending on the system the floating point division operation can take several times longer
than a floating point multiplication.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

222

© 0 N O U e W N e

o e
N o= O

In the first case n times one division and one addition needs to be made, with n the number of field values.
In the second case 2n times additions and one division is to be made.

T =n(Ty+Ty) To =2nTs 4+ Ty (165)
We introduce the factor J, that is the ratio between Ty and T5.

Ty =n(6Ts + Ty) Ty =2nT, 4 6T (166)

Ty =nTs(1+9) Ty = Ts(2n + 9) (167)

ZE 7&

= —n(1 = =(2 1

T, n(l+0) T (2n + 9) (168)
Next we assume that n is very large

JE 75

— =n(1 — =2 1

T, n(l+0) T, n (169)

So the first formula takes 1 + § operations, whereas the second formula takes approximately 2n operations. If
¢ is larger than one, the second formula will take less time for computation. A § smaller than one is highly
unlikelyor even impossible as the addition is a very simple operation. Remember, ¢ is the ratio between the time
a division takes and the time an addition takes. The actual ratio vary according to the system architecture,
the compiler and the implementation, e.g. [1] reports a factor of 5 to 6 for single and double precision floating
point division. This argument does not consider the memory usage of the operations involved, it only focuses
on the number of floating point operations.

Because the Courant number is computed after every time step the time needed to calculate the Courant
number has an impact on the simulation time.

39.5.5 The two-phase Courant number

In a two-phase simulation there are several choices of how to compute the Courant number. In total, there
are 4 velocity fields (U1, U2, U and Ur). These are the velocities of the phases 1 and 2 as well as the mixture
and relative velocities. The solver twoPhaseFulerFoam computes the Courant number for the mixture and the
relative velocities.

Listing 308 shows the content of the file CourantNos.H which is part of the source code of this solver. Line 1
computes the mixture Courant number by including the file CourantNo.H. This is the file described in Section
39.5.4. As this code operates on the field phi, which happens to be the flux of the mixture, the mixture Courant
number is computed.

The next lines compute the Courant number based on the relative phase flux. At line 11 the maximum of
this two Courant numbers is determined and stored into the variable CoNum.

CoNum is the Courant number used by the time stepping mechanism. So the variable time steps of the
twoPhaseEulerFoam solver are based on the maximum of the mixture and relative velocity Courant number.

#include "CourantNo.H"

¢ scalar UrCoNum = 0.5*xgMax
(fvc::surfaceSum(mag(phil - phi2)) ().internalField()/mesh.V().field ()
Y*runTime.deltaTValue () ;
Info<< "Max Ur Courant Number = " << UrCoNum << endl;
CoNum = max(CoNum, UrCoNum);
}

Listing 308: The content of the file CourantNos.H

39.6 The registry

At some point in our study of OpenFOAM’s sources, its documentation or the internet we all came across
words like registered objects or similar expressions. This section tries to cast some light on this topic, or at least
present the thoughts and findings of the author. This section is closely related to Section 39.7.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

223

39.6.1 The classes involved
Here is an extract of the descriptions found in the header files of the respective classes.

IOobject IOobject defines the attributes of an object for which implicit objectRegistry management is
supported, and provides the infrastructure for performing stream I/0.

reglOobject regIOobject is an abstract class derived from I0object to handle automatic object registration
with the objectRegistry.

objectRegistry registry of regIOobjects

In Figure 63 a detail of the class hierarchy surrounding the class regIOobject is shown.

IOobject

[

reglOobject

writeData()
PaN

objectRegistry IOdictionary IOField DimensionedField

I

Time

Figure 63: A partial view of the class hierarchy involving regIOobject; note that this diagram is complete
only for the classes I0object and regIOobject — meaning I0object is not derived from any other class and
reglOobject is derived from only IOobject; the other classes have more base classes than shown in this
diagram.

IO0object

This class provides the basic facilities for I/O. In Section 39.4.4 the practical or typical use of this class is shown.

reglOobject

This class is an abstract class as the description in the header mentions. In Figure 63 the name of the pure
virtual method which makes this class an abstract class is shown in an italic font. This means all classes derived
from regIOobject must implement this pure virtual method. This also means, that we can not create an object
of the type regIOobject directly. Thus, in all of OpenFOAM’s sources we find a constructor call for the class
regIOobject only in the initializer list of classes derived from regIOobject.

objectRegistry

The objectRegistry is eponymous to this section. In fact there is not the one registry in OpenFOAM, there
are several. Among others, the classes Time, cloud, and polyMesh are derived from objectRegistry. Figure
64 shows the classes from which objectRegistry is derived.

In OpenFOAM there is usually only one object of the type Time, usually named runTime. There are no
solvers to the knowledge ot the author, which use more than one instance of the class Time. As most solvers also
feature only one mesh, the seperation between Time and polyMesh as being a registry seems to be overdone.
However, there are solvers which feature several meshes, e.g. the conjugate heat transfer solvers. In the simplest

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

224

objectRegistry

Time& time()
objectRegistry& parent()
T& lookupObject(word)

I

reglOobject HashTable<regIOobject™>
writeData()

Figure 64: The base classes of the class objectRegistry; this class is derived from regIOobject and
a HashTable; note that the template parameter of the HashTable is a pointer to regIOobject; thus
objectRegistry is an reglOobject as well as a HashTable of regIOobject pointers — this is C++’s tem-
plate madness and inheritance wizardry in action.

configuration there is one mesh for the solid part of the domain and one mesh for the fluid part of the domain.
However, the solver chtMultiRegionFoam supports an arbitrary number of fluid and solid domains. In this case
the temperature field of the solid region i needs to be registered with the appropriate registry, namely the mesh
of the solid region 1.

An OpenFOAM solver has a number of object registries in use, the most prominent are the runTime and
the mesh objects. For fields it is important to know that they belong to a mesh, since the entity field is a mere
list of values. Only the connection to the mesh gives the field an actual meaning, i.e. the entry at position ¢ in
the list is the cell centre value of cell 7. Furthermore, the field also needs a connection to the actual time state
of the simulation, otherwise there would be no meaningful way to define or calculate a temporal derivative.

39.6.2 Using the registry

Of what use could a possible object registry be? Well, ask the code.

In Section 49.3 we showed a way to search files for a certain pattern. Now we search all files with the file
extension .C for the pattern lookupObject and count the hits!??. Listing 309 shows the command we can use.
First we use find to look for all files with the specified pattern for the file name. The result is then piped to
grep which searches the files for the specified pattern. Lastly, the result of grep is piped to wc, which counts
lines, words and bytes. Thus the first number returned by this sequence of commands tells us the number of
hits. The actual number of hits is approximately half the displayed number, since in the process of building
OpenFOAM from sources, symbolic links are created within the 1nInclude folders!'®3.

find $FOAM_SRC -name ’*.C’ | xargs grep ’lookupObject’ | wc

Listing 309: Find and scan files with file extension .C for the pattern lookupObject and count the hits

The command of Listing 309 results in 1068 hits in the author’s OpenFOAM-2.3.x installation at the time of
writing. 537 of these hits come from symbolic links of 1nInclude directories. This means that lookupObject ()
gets used a lot. So what is lookupObject () good for?

Need to know vs. want to know

One principle of encapsulation or information hiding is a fundamental principle of object-oriented program-
ming'%*. The general idea is to hide the actual implementation of something behind a publicly accessible
interface. Thus, the inner workings of a class may change without affecting its use. The iterator concept is

102The method lookupObject() can be used to ask the registry for a registered object. The usefulness will be explained in the
subsequent paragraphs.

103The 1nInclude folders collect links to all files of a certain library, thus when compiling a solver that uses this library we need
to include only the InInclude folder and not the whole directory tree of the library’s sources. This minimizes the number of entries
in the Make/options files.

104Tnformation hiding and encapsulation are often used synonymously, however, strictly spoken they are not exactly the same.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 225

a good example of the benefits of information hiding. Typical container classes implement a feature called
iterators that are used to iterate over all elements of the container. By using the public interface of the iterator,
the actual container behind may be any kind of data structure (a linked list, a vector, a hash table, etc.).

Besides providing and using interfaces for accessing the data of a class it is also a common and good practice
to restrict the scope of data, e.g. temporary data being local to the class or method where it is actually used.
Thus, in the design of the classes we implement we limit the data contained within and/or passed to the class
to the necessary minimum, i.e. the viscosity law used in a solver does not need to know about the solver we
used to solve the discretized equation system. However, there might arise the need to access data, which the
original designers of a certain familiy of classes did not anticipate.

Namespaces & scopes

Another aspect are namespaces and variable scopes within our source codes. A variable is visible in the
namespace and scope it is declared. If we look at the top level code of a solver, e.g. twoPhaseFEulerFoam,
we see a lot of #include statements and the main() method of the program. Although, we find no direct
statement involving the namespace, in the file fvCFD.H a statement is hidden which causes the compiler to
use the namespace Foam. This is the reason why we can later e.g. in createFields.H use typenames such as
volScalarField which are defined in the namespace Foam. Otherwise we would need to explicitely specify the
namespace as well, e.g. Foam: :volScalarField. Thus, all objects created by a solver such as mesh, runTime,
etc. are visible in the namespace Foam.

Models however, have their own namespaces. Listing 310 shows an example of such a model with its own
namespace. Within the namespace Foam a new namespace diameterModels is created. Within this namespace
the class isothermal is defined. Thus the classes implementing diameter models do not pollute the Foam
namespace.

Although, the diameterModels namespace is a subset of the Foam namespace and everthing declared within
Foam is also visible within Foam: :diameterModels, the diameter models are compiled with other models into a
shared library. Thus, when these files are compiled, the compiler knows nothing of the objects in the namespace
Foam created in e.g. createFields.H.

namespace Foam
namespace diameterModels

{
class isothermal

public diameterModel
{
// code removed

}

Listing 310: The class definition of the isothermal class, derived from the class diameterModel in
isothermalDiameter.H

Looking up stuff

Listing 311 shows the definition of the method d() of the class isothermal. For the reasons explained above
isothermal.C and createFields.H being in different compilation units, we can not access the pressure field p
directly from within the method body, even though p is part of the namespace Foam. However, other diameter
models do not need to access the pressure field, e.g. constant which implements a constant diameter.

Foam::tmp<Foam::volScalarField> Foam::diameterModels::isothermal::d() const

{
const volScalarField& p = phase_.U().db().lookupObject<volScalarField>

return dO_x*pow(pO_/p, 1.0/3.0);

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 226

Listing 311: The definition of the method d() of the class diameterModel in isothermalDiameter.C

The example above shows the value of the lookup mechanism. Since some sub-models operate on some
fields, it is easy to get a reference to the mesh from the field, as it is done in phase_.U() .db(). phase_ is a
member of the base class of the diameter models'®®. The call phase_.U() returns a reference to the velocity
field of the phase in question. As the velocity field is registered with the mesh otherwise we wouldn’t know
which velocity value belongs to a certain cell we get a reference to the mesh by calling db (), which is a method
of the class I0object. This handy mechanism saves us from polluting sub-models with references to the mesh,
the time, to fields we might need at some point or some derived classes might need in special cases.

Thus the lookupObject () method provides a tool for us to get references to fields which at compile-time
may not be declared and thus usable. Remember, the pressure field is declared in the solver’s createFields.H
file, which is in a different compilation unit as the library we are compiling our diameter model for. If the code
of the diameter model and the solver would be in the same compilation unit (the solver’s executable) we would
not need the lookup mechanism. However, since the developers of OpenFOAM aim for modularity, placing
everything into a single compilation unit is against the design principles of modularity and reusability.

The lookupObject () method is templated since we can register anything with the mesh, in fact anything
that is derived from regIOobject, since an objectRegistry is a HashTable of regIOobject pointers. Thus,
at compile-time the method and the compiler do not know exactly which data types it is going to handle.
This is where templates come into play. The templated method is implemented once for the template pa-
rameter, and when we use the method, we simply replace the template parameter with the actual type, as in
lookupObject<volScalarField>("p"). The compiler then does the rest of the work and generates the appro-
priate code. We could resolve this issue without templates by using function overloading at the price of massive
code duplication and poor maintainability.

39.6.3 Printing the registry

If you are curious you can add the following lines of code to a test utility of yours to check what is registered
with the mesh and the runTime object registry. Note that mesh and runTime must be accessible from the place
you put the code into. Also the names of the objects might differ in some cases.

Info << "mesh.names () " << mesh.names () << nl << endl;
Info << "runTime.names () " << runTime.names () << endl;

Listing 312: Printing the contents of the object registries mesh and runTime to Terminal

39.7 1I/0O - input & output

Some aspects of I/O were already covered in Section 39.4.4. However as this collection of stuff is fragmented
by design or by the lack of such we cover the topic of I/O in a more general manner.

39.7.1 Output to Terminal - OpenFOAM’s very own printf ()

In programming we have often the need to print stuff to the Terminal, e.g. for printf () debugging!’®. With
C++ general I/O was implemented on the basis of I/O streams. C++’s I/O streams provide a type-safe and
uniform way to implement I/O for both built-in and user-defined types [45]. See Listings 313 and 314 for the
use of C’s printf () function and C++’s streams.

#include <stdio.h>
int main(int argc, char**x argv)
{

printf ("Hello, World!\n");

return O;

1051t is a convention of OpenFOAM’s developers to append an underscore character (_) to the names of the data members of a
class in order to make them easily distinguishable from method parameters.
106Named after C’s ubiquitous printf () function, see http://stackoverflow.com/a/189570/2055536

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

http://stackoverflow.com/a/189570/2055536

Listing 313: The Hello World! example of C.

#include <iostream>

int main()

{
std::cout << "Hello World!" << std::endl;

return O;

}

Listing 314: The Hello World! example of C++.

OpenFOAM implements its own stream library. The generic stream library of OpenFOAM is based on the
class I0stream. The description of this class in its header file sheds some light on the reasons for doing so:

An IOstream is an abstract base class for all input/output systems; be they streams, files, token
lists etc.

The basic operations are construct, close, read token, read primitive and read binary block. In
addition version control and line number counting is incorporated. Usually one would use the read
primitive member functions, but if one were reading a stream on unknown data sequence one can
read token by token, and then analyse.

OpenFOAM handles all kinds of communication in terms of streams, among others: Terminal I/O with the
user, file I/O and inter-process communication for parallel processing. The Hello World! example for the
OpenFOAM world in Listing 315 looks very similar to the example of C++-.

#include "Istream.H"
using namespace Foam;
int main(int argc, char *argv[])
{
Info << "Hello OpenFOAM!" << endl;

return O;

}

Listing 315: The Hello World! example written in OpenFOAM.

Conditional (debug) output

printf () debugging is a very handy, low-level technique to trouble-shoot pieces of code. In the case of actual
debugging, we will remove all lines of code printing to the Terminal once we are done debugging. However, we
might want to create software, which may be either talkative or silent'?”. In this case we need conditional Info
statements.

Listing 316 shows a Hello World! example with conditional output. This listing is quite lengthy, since we
decided not to use simple boolean to control the conditional output. Instead we opted for a real case scenario,
in which the verbosity is controlled by a command line option. This, however, entailed some more lines of code
to deal with command line parameters.

#include "argList.H"

bool verbose(false);

using namespace Foam;

int main(int argc, char *argv[])

{
arglist::addNote

107Have you ever come across -v or ——verbose command line switches when using UNIX or LINUX computers?

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

228

(
"This is a \"Hello World!\" program for the OpenFO0AM world."

)

arglist::noBanner ();
arglList::noParallel();

arglList::removeOption("noFunctionObjects");
arglist::removeOption("case"

arglist::addBoolOption
(

"verbose",

"control the chatty-ness of me"
)5

Foam::arglist args(argc, argv);
if (args.optionFound("verbose"))
{
verbose = true;
}
Info << "Hello OpenFOAM!" << endl;

if (verbose) Info << "... and hello to all other non-OpenFOAM worlds!" << endl;

return O;

Listing 316: The Hello World! example written in OpenFOAM with conditional chattiness.

In addition to the boolean command line switch, we added a note informing the user about the executable.
This note gets displayed, when the usage message is shown by invoking the executable with the command line
option -help. OpenFOAM adds a number of command line parameters by default, thus we remove some of
them (the ones that make no sense for a Hello World! program, such as the parallel option).

The second to last line of code is the one that actually controls the conditional output. This is done by a
good old if statement.

In the source code of the function objects of OpenFOAM-2.3.x we observed another possiblity to define
conditional output. There, we can pass an argument to Info. With OpenFOAM-2.4.x and higher versions this
does not compile anymore. Listing 317

// OpenFOAM-2.3.x
Info(log_)<< " Including porosity effects" << endl;

// OpenFOAM-2.4.x and higher
if (log_) Info<< " Including porosity effects" << endl;

Listing 317: Implementing conditional output, controlled by the Switch log_, in different OpenFOAM versions.
This example is taken from the force function object. See the file force.C.

39.7.2 The registry and the I/O or the truth behind runTime.write()

Registering fields with the runTime object registry also allows makes our lives easier when we want to write
the current state of the simulation to disk. In a great number of solvers, possibly in all of them, we find an
instruction like runTime.write () within the main loop of the main method. This call to the method write ()
causes fields to be written to disk. As every solver write a different set of fields to disk, we may ask ourselves how
the solver or OpenFOAM knows which fields to write when we call the write () method of the runTime object?
Here, the registry nature of the Time class comes into play. Since we register all our fields, which we eventually
want to read or write, with the runTime object, the runTime object has a list of objects (regIOobjects in fact)
which are to (or might) be written!?®. In fact, since objectRegistry is derived from the type HashTable, an
object registry is a list of objects which are to (or might) be written'??. The call of the write method of the

108depending on the write flags of the I0object part of the type. See Section 39.4.4 for a discussion on the read and write flags
of the I0object class.

109 A hash table is not really a list, however, we can iterate over a hash table the same way we can iterate over a list. The
description in the header file of the HashTable class describes the class as being An STL-conforming hash table.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 229

IX

© o N e G oA W N R

e e e
oA W N = O

bool Foam::Time::writeObject
(
I0stream::streamFormat fmt,
I0stream::versionNumber ver,
I0stream::compressionType cmp
) const
{
if (outputTime ())
{

// some code removed

timeDict.reglOobject::writeObject (fmt, ver, cmp);
bool writeOK = objectRegistry::writeObject (fmt, ver, cmp);

// further code removed

Listing 319: Parts of the method writeObject () of the class Time in TimeIO.C

Time class causes Time to iterate over its self (runTime is a list of regIOobjects by inheritance!!’) and call the
write () method of every single item within the list. The method write() is defined in the regIOobject class.

The closer look into the sources is revealing if we take some of C++’s rules into consideration. Listing 318
shows us the method that is called when we call write() on runTime, bear in mind that Time is derived in
second generation from regIOobject via the class objectRegistry. The listing shows a call of the method
writeObject ().

bool Foam::reglOobject::write() const

{
return writeObject
(
time () .writeFormat (),
I0Ostream::currentVersion,
time () .writeCompression ()
)
}

Listing 318: The method write() of the class regIOobject in regIOobjectWrite.C

If we search the sources of Time and all its base classes we find out that Time, regIOobject and objectRegistry

all define a method called writeObject ()11, All of these three methods share the same signature!'? i.e. they

receive the same function arguments. Since the call of writeObject() is not further specified for a certain
namespace, it is the method writeObject () of the class Time, which is called when we call runTime.write ()
as runTime is of the type Time.

In Listing 319 we see a portion of the definition of the method writeObject () of the class Time. There we
also see calls explicitely to the methods writeObject () of the classes regIOobject and objectRegistry.

Thus, the method writeObject () of all three classes (Time, regIOobject and objectRegistry) are called
when runTime.write() is called. It is worth noticing that the call of regIOobject: :writeObject () is invoked
on the timeDict object. The definition of this object is part of the removed code prior to the call. A look into
the source code reveals, that timeDict is an I0dictionary which is a class also derived from regIOobject,
see Figure 63. The call of timeDict.writeObject() is the piece of code which creates the uniform folders
within the time step directories!!'3.

The method writeObject () of the class objectRegistry does the actual iteration over all elements within
the registry. Listing 320 shows the actual iteration over the hash table of regIDobject pointers. For each
element writeObject () is called if the write flag is not set to NO_WRITE. Now the method writeObject() of
the class regIOobject is called, since the iteration is over regIOobject pointers. This call on Line 16 of Listing

10think around the family tree, e.g. in Figure 64

11The arguments of the function are dropped in the text for the sake of brevity. In fact there is no method named writeObject ()
with an empty parameter list. This can be checked via these commands: find $FOAM_SRC -name ’*.[CH]’ | xargs grep
’writeObject ()’

112The function signature consists of the name of the function and its parameters.

113In case you ever wondered where these come from.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 230

320 causes a registered field to be written to disk.

bool Foam::objectRegistry::writeObject

(
I0stream::streamFormat fmt,
I0stream::versionNumber ver,
I0stream::compressionType cmp

) const

{

bool ok = true;

forAllConstIter (HashTable<regIOobject*>, *this, iter)

{
// code removed handling debug output
if (iter () ->writeOpt () != NO_WRITE)
{
ok = iter()->writeObject(fmt, ver, cmp) && ok;
}
}

return ok;

Listing 320: Parts of the method writeObject () of the class objectRegistry in objectRegistry.C

In conclusion we have learned by digging the source code of OpenFOAM the magical inner workings of
the call runTime.write(). First the Time class writes its state to disk into the uniform folder and then the
objectRegistry part of the runTime object writes all registered fields. It was already mentioned in Section 39.5
that the class Time has a multiply divided personality. And some of those even bring along an ancestry. This
highlights the need to have a certain understanding of C++ in order to be able to deduce what’s going on from
the sources of OpenFOAM as OpenFOAM makes very heavy use of C++’s language features such as multiple
inheritance, polymorphism and templates. In the context of programming paradigms involved, OpenFOAM
makes use of (among others): object-orientation and generic programming.

39.8 Turbulence models

In Section 19.2 it is stated that the user can choose between three options.
1. A laminar simulation
2. Using a RAS turbulence model
3. Using a LES turbulence model

This statement is reflected in the relationship between the classes implementing the turbulence models in
OpenFOAM. Object oriented programming allowes the programmer to translate relationships directly from
human language to source code. Two statements can be made about turbulence models

1. All RAS turbulence models are turbulence models, but not all turbulence models are RAS turbulence
models.

2. A RAS turbulence model is not the same as an LES turbulence model, however, both are turbulence
models.

Both statements are reflected by the class diagram of the turbulence models. On the top is the abstract class
turbulenceModel. This abstract class, provides the framework for all derived turbulence classes. Also, all
functionality common to all possible turbulence classes can be defined in this class. All derived classes will then
inherit this functionality.

Each turbulence model is derived from this abstract base class. Each turbulence class will implement specific
functionality individually.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

turbulence

& divDevReff():

A
| |

laminar RASModel LESModel

& divDevReff(): & divDevReff(): & divDevReff():

Figure 65: Graphic representation of inheritance of the turbulence model classes.

39.8.1 The abstract base class turbulenceModel

The base class turbulenceModel is an abstract class''*. It contains several pure-virtual functions. To be able
to call this functions, these functions must be overridden by the classes that are derived from the base class.
A pure-virtual class can not be called. Listing 321 shows the declaration of pure-virtual or abstract methods.
The = 0 indicates that a method is abstract.

//- Return the turbulence viscosity
virtual tmp<volScalarField> nut() const = 0;

//- Return the effective viscosity
virtual tmp<volScalarField> nuEff () const = 0;

Listing 321: Declaration of the virtual methods in turbulenceModel.H

The base class contains not only virtual functions. It also contains functions that are the same for all derived
classes. Consequently, this functions are implemented by the base class. Listing 322 shows the implementation
of the function nu(). This function is used to access the laminar or molecular viscosity. The laminar viscosity
is a property of the fluid itself and has nothing to do with turbulence. However, the turbulence models need to
access the laminar viscosity.

//- Return the laminar viscosity
inline tmp<volScalarField> nu() const
{

return transportModel_.nu();

}

Listing 322: Implementation of nu() in turbulenceModel .H

Every class derived from an abstract class must at least override the abstract methods. The non-abstract
methods of the base class — like nu() from Listing 322 — can be used by the derived classes. No matter if a RAS
or a LES turbulence model is used, the laminar viscosity will always be the same.

39.8.2 The class RASModel

The class RASModel is derived from the abstract class turbulenceModel. The class RASModel itself is the base
class for all RAS turbulence models. It is also an abstract class because it does not override all abstract methods
inherited from turbulenceModel.

However, the class RASModel implements all methods that are common to all RAS turbulence models. List-
ing 323 shows the implementation of the method nuEff () in the class RASModel.

//- Return the effective viscosity
virtual tmp<volScalarField> nuEff () const
{

return tmp<volScalarField>

(

114 A class that contains one or more abstract methods is called an abstract class. If a class contains only abstract methods, then
it is sometimes called a pure-abstract class.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

232

new volScalarField("nuEff", nut() + nu())
)
}

Listing 323: Implementation of nuEff () in RASModel.H

The effective viscosity nuEff is calculated from the laminar viscosity, which is a property of the fluid, and the
turbulent viscosity. The turbulent viscosity is a property of the turbulence model. The function nu() in Listing
323 is implemented in the class turbulenceModel, see Listing 322. The function nut () is not implemented by
the class RASModel. Therefore, this method must be implemented by the classes derived from RASModel.

39.8.3 RAS turbulence models

All RAS turbulence models are derived from the class RASModel. FEach derived class must implement all
remaining abstract methods. Figure 66 shows a simplified class diagram — there is a number of RAS turbulence
models available in OpenFOAM.

RASModel
& divDevReff():

A
| |

laminar kEpsilon SpalartAllmaras

= divDevReff(): = divDevReff(): = divDevReff():

Figure 66: Inheritance of RAS turbulence models

39.8.4 The class kEpsilon

The class kEpsilon is derived from RASModel.

class kEpsilon

public RASModel
{

/* class definition */

}

Listing 324: Class definition of kEpsilon in kEpsilon.H

The function nut () has to be implemented by kEpsilon. Listing 325 shows how the function nut() is
implemented. This function simply returns the class member nut_.

//- Return the turbulence viscosity
virtual tmp<volScalarField> nut() const
{

return nut_;

}

Listing 325: Implementation of nut() in kEpsilon.H
The way how nut_ is calculated differs between the RAS turbulence models. See Listing 359 in Section
44.2.2.
39.9 Debugging mechanism

OpenFOAM brings along a handy debugging mechanism. This mechanism can be used when creating additional
model libraries. The OpenFOAM wiki features a section explaining the built-in debug mechanism?!*®.

15http: //openfoamwiki.net/index . php/HouTo_debugging#Getting_built-in_feedback_from_OpenFOAM

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

233

http://openfoamwiki.net/index.php/HowTo_debugging#Getting_built-in_feedback_from_OpenFOAM

The global debug flags — controlling the behaviour of the debugging system-wide — are specified in \$FOAM_SRC/. . /etc/con
From OpenFOAM-2.2.0 onwards the global debug flags can be overridden by stating the debug flags of choice
in the case’s controlDict!!6,
As this debugging mechanism relys on internal variables no re-compiling is involved when using this kind of
debugging mechanism. This kind of debugging is sometimes referred to as printf debugging''”.
By default all debug switches are initialised with a zero value, therefore the debig feature for the specific
class is disabled. However, when the solver sets up the case, the global and local entries are checked. Listing 326
shows the entry in the controlDict to override debug switches. Listing 327 shows the solver output informing
us of the local settings in controlDict.

DebugSwitches
{
DefaultStability 0;
YoonLuttrellAttachment 1;
}

Listing 326: Specifying debug switches in the case’s controlDict

Overriding DebugSwitches according to controlDict
DefaultStability O;
YoonLuttrellAttachment 1;

Listing 327: Solver output when specifying debug switches in the case’s controlDict

39.9.1 Using the debugging mechanism

If the debugging mechanism is enabled for a class''®, Listing 328 shows how to actually use it. The code is

amazingly simple. The magic behind the scenes provides a variable named debug. We simply use this variable
in an if statement.

// print debug information

if (debug)
{

// debug action
}

Listing 328: Using the debug mechanism in a class.

39.9.2 Use case: Write intermediate fields

Listing 329 shows the definition of a method named Ea. For debugging purposes we want to write intermediate
fields to disk. In Line 7 of Listing 329 we compute a Reynolds number and store it in ReB. This is used to
generate the return value of the method. In normal operation only the return value is of interest. When
debugging also intermediate results may be of interest. The field ReB is by default not written to disk and
ceases to exist when the scope leaves the method, i.e. when the method is reaches its end the variable ReB is
automatically deleted'?.

Note the arguments passed in Line 7. The first is the name of the field. We could omit this argument,
however, when we write the variable ReB to disk the first argument determines the file name. If this argument
was omitted, then an automatically generated name — based on the way the field was generated — would be used.
In this very case the file written would be named max (((mag((U1-U2))*d) Inu),0.001). We easily recognize
the formula of Line 7. A file name containing special characters (non-alphanumerical characters) is generally
not advisible!2°,

M6http: //www.openfoam.org/version2.2.0/runtime-control . php

117See http://oopweb.com/CPP/Documents/DebugCPP/Volume/techniques.html or http://en.wikipedia.org/wiki/Debugging#
Techniques

1185ee Section 39.10 on the background of the debugging mechanism.

19This behaviour is subsumed under the term automatic variable. See e.g. http://en.cppreference.com/w/cpp/language/
storage_duration

12OSeee.g.http://www.teamdrive.com/Invalid_characters_in_file_and_folder_names.html

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 234

http://www.openfoam.org/version2.2.0/runtime-control.php
http://oopweb.com/CPP/Documents/DebugCPP/Volume/techniques.html
http://en.wikipedia.org/wiki/Debugging#Techniques
http://en.wikipedia.org/wiki/Debugging#Techniques
http://en.cppreference.com/w/cpp/language/storage_duration
http://en.cppreference.com/w/cpp/language/storage_duration
http://www.teamdrive.com/Invalid_characters_in_file_and_folder_names.html

© 0 N e A W N e

e e e e
© o N O s W N = O

© 00O Ut WN -

_ =
N = O

=W N =

In Line 14 we manually call the write() method. This method is available to all registered input/output
objects'?!. As we construct the local variable ReB from the registered i/o object Ur we can savely assume that
ReB will also be of this type.

Foam::tmp<Foam::volScalarField> Foam::YoonLuttrellAttachment::Ea
(
const volScalarField& Ur, const dimensionedScalar& dP
) const
{
// do stuff
volScalarField ReB("ReB", max(Ur*dB/phase2_.nu(), scalar(1.0e-3)));

// debug instructions

if (debug)
{
if (Ur.time () .outputTime ())
{
ReB.write ();
}

}

// do more stuff

Listing 329: Manually writing intermediate fields for debugging.

39.10 A glance behind the run-time selection and debugging magic

OpenFOAM offers some amazing features. E.g. at compile-time of a fluid solver nobody knows which turbulence
model will be used with the solver. In fact it can be none at all or any of the available. The same is true for
drag models and the two-phase Eulerian solver with the exception that you can not use no drag law.

The entire wisdom behind the run-time selection mechanism, however, is more complex than what is pre-
sented in this section. Here, we focus on the macros we can find in the source files of the SchillerNaumann drag
model class. We know, this drag model is derived from the base class dragModel. For the run-time selection
mechanism to work, the base class also needs to do some preparations. See http://openfoamwiki.net/index.
php/OpenFO0AM_guide/runTimeSelection_mechanism for a discussion on the run-time selection mechanism.
This section hopefully sheds some light into some of the inner workings of the run-time selection mechanism.

We shall now have a look behind the magic powers of OpenFOAM using the SchillerNaumann drag model as
an example. The Listings 330 and 331 (Lines 10 and 3) show the two harmlessly looking lines of code enabling
all the magic.

namespace Foam

class SchillerNaumann

public dragModel
{

public:
//- Runtime type information
TypeName ("SchillerNaumann") ;

Listing 330: The relevant lines of code in SchillerNaumann.H

namespace Foam
{

defineTypeNameAndDebug (SchillerNaumann, 0);
}

Listing 331: The relevant lines of code in SchillerNaumann.C

1215¢e http://openfoamwiki.net/index.php/OpenF0AM_guide/Input_and_Output_operations_using_dictionaries_and_the_
I0object_class and http://openfoamwiki.net/index.php/OpenFO0AM_guide/objectRegistry

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

235

http://openfoamwiki.net/index.php/OpenFOAM_guide/runTimeSelection_mechanism
http://openfoamwiki.net/index.php/OpenFOAM_guide/runTimeSelection_mechanism
http://openfoamwiki.net/index.php/OpenFOAM_guide/Input_and_Output_operations_using_dictionaries_and_the_IOobject_class
http://openfoamwiki.net/index.php/OpenFOAM_guide/Input_and_Output_operations_using_dictionaries_and_the_IOobject_class
http://openfoamwiki.net/index.php/OpenFOAM_guide/objectRegistry

S R N

© 0 N oA W N e

=
= o

39.10.1 Part 1 - TypeName

First we will examine Line 10 of Listing 330.

TypeName ("SchillerNaumann");

What looks like a function call is actually a preprocesser macro?

is defined in the file typeInfo.H. Listing 332 shows its definition.

A \#define macro consists of at least two parts. First comes the identifier, then comes the optional pa-
rameter list in parentheses and at least the replacement token list until the end of the line'?*. As the macro
is expanded by the preprocessor, the identifier (in this case TypeName) is replaced with the replacement tokes
(all instructions after the parameter list). A macro can not cover more than one line, however, by using the
backslash (\\) the current line is continued with the next line!.

22 with parameters'?3. The macroTypeName

//- Declare a ClassName () with extra virtual type info
#define TypeName (TypeNameString)

ClassName (TypeNameString) ;

virtual const word& type() const { return typeName; }

~ -

Listing 332: The macro definition in typeInfo.H

Thus, the line TypeName ("SchillerNaumann") ; expands to.

ClassName ("SchillerNaumann") ;
virtual const word& type() const { return typeName; }

The second line is a function definition. As this function definition is made by the macro, this function is
defined for every class where the TypeName macro is stated in the class definition. This demonstrates one of the
major reasons for using preprocessor macros — the ability to write recurring pieces of code just once.

The first line of the above listing is itself a macro. Listing 333 shows the macro definitions that are necessary
to expand the ClassName macro.

//- Add typeName information from argument \a TypeNameString to a class.

// Also declares debug information.

#define ClassName (TypeNameString) \
ClassNameNoDebug (TypeNameString) ; \
static int debug

//- Add typeName information from argument \a TypeNameString to a class.
// Without debug information

#define ClassNameNoDebug(TypeNameString) \
static const char* typeName_() { return TypeNameString; } \
static const ::Foam::word typeName

Listing 333: Two macro definitions in className.H

Thus, we further expand the TypeName ("SchillerNaumann") macro.

static const char* typeName_() { return "SchillerNaumann"; } \
static const ::Foam::word typeName

static int debug

virtual const word& type() const { return typeName; }

As the TypeName ("SchillerNaumann") macro was put into the class definition of the verb+SchillerNaumann+
class, the macro added two function definitions (first and last line), one of which is a static method, and two
static variables (the two center line).

Static elements of class (variables or methods) are elements that exist only once for all instances of a class?6.
In the case of a two-phase Eulerian solver two instances of the SchillerNaumann class might exist — in the case

122nttp://en.wikipedia.org/wiki/C_preprocessor

1233ee e.g. http://www.cplusplus.com/doc/tutorial/preprocessor/

124https://gec. gnu.org/onlinedocs/cpp/The-preprocessing-language . html

125https://gec.gnu. org/onlinedocs/cpp/The-preprocessing-language . htm1#The-preprocessing-language
126http: //www.tutorialspoint . com/cplusplus/cpp_static_members.htm

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

236

http://en.wikipedia.org/wiki/C_preprocessor
http://www.cplusplus.com/doc/tutorial/preprocessor/
https://gcc.gnu.org/onlinedocs/cpp/The-preprocessing-language.html
https://gcc.gnu.org/onlinedocs/cpp/The-preprocessing-language.html#The-preprocessing-language
http://www.tutorialspoint.com/cplusplus/cpp_static_members.htm

S N

S

© ®w N o o

10
11
12
13
14
15
16

this model was specified for both phases. No matter which of the two instances of the class call the method
typeName () it is always the same function called. In this case — returning the name of the class — the use of a
static method makes perfect sense and is the only sensible way to implement this task.

The TypeName ("SchillerNaumann") macro is used to create a method that returns the name of the class and
a method that return the name of the type. Obviously, the class name and the type name were not considered
equivalent when designing OpenFOAM!?7. The variables created by the TypeName ("SchillerNaumann") macro
are a static variable containing the type name and a static variable named debug. This debug variable controls
the debug mechanism covered in Section 39.9.

39.10.2 Part 2 - defineTypeNameAndDebug

Now we will examine Line 3 of Listing 331 which is repeated just below.

defineTypeNameAndDebug (SchillerNaumann, 0);

The defineTypeNameAndDebug macro is defined the file className.H.

//- Define the typeName and debug information
#define defineTypeNameAndDebug (Type, DebugSwitch)
defineTypeName (Type) ;
defineDebugSwitch (Type, DebugSwitch)

- -

Listing 334: A macro definition in className.H

Thus our macro expands to two macros.

defineTypeName (SchillerNaumann) ;
defineDebugSwitch(SchillerNaumann, O0);

Listing 335 shows the macro definitions necessary to expand the above two macros.

//- Define the typeName, with alternative lookup as \a Name
#define defineTypeNameWithName (Type, Name) \
const ::Foam::word Type::typeName (Name)

//- Define the typeName
#define defineTypeName (Type) \
defineTypeNameWithName (Type, Type::typeName_())

//- Define the debug information, lookup as \a Name
#define defineDebugSwitchWithName (Type, Name, DebugSwitch) \
int Type::debug(::Foam::debug::debugSwitch(Name, DebugSwitch))

//- Define the debug information

#define defineDebugSwitch(Type, DebugSwitch)
defineDebugSwitchWithName (Type, Type::typeName_(), DebugSwitch);
registerDebugSwitchWithName (Type, Type, Type::typeName_())

- -

Listing 335: Four macro definitions in debugName.H

Thus, our macros expand to:

const ::Foam::word SchillerNaumann::typeName (SchillerNaumann::typeName_());
int SchillerNaumann::debug(::Foam::debug::debugSwitch(SchillerNaumann, 0));
registerDebugSwitchWithName (SchillerNaumann, SchillerNaumann, SchillerNaumann::typeName_());

The first line of the expansion of the macro defineTypeNameAndDebug(SchillerNaumann, 0) assigns the
return value of the function typeName_() to the static variable typeName. This has the effect that the class
name and the type name have an equal value. However, the way this framework is set up allows for different
names.

127See Section 39.10.3 for an example when class name and type name are different.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

B T S

The second line assigns the return value of the function call : :Foam: : debug: :debugSwitch(SchillerNaumann, 0)

to the static variable SchillerNaumann: :debug. The reason why the value is not directly used to assign the
value to the static variable is that the called method adds the debug switch to a dictionary, see Listing 336.

The last line of the macro expansion invokes another macro. Listing 337 shows the macro definition of
registerDebugSwitchWithName.

int Foam::debug::debugSwitch(const char* name, const int defaultValue)
{
return debugSwitches () .lookupOrAddDefault
(
name, defaultValue, false, false

);

Listing 336: Adding the debug switch to the dictionary in debug.C

//- Define the debug information, lookup as \a Name
#define registerDebugSwitchWithName (Type, Tag,Name)
class add##Tag##ToDebug

public ::Foam::simpleReglOobject
{
public:
add##Tag##ToDebug(const char* name)

::Foam::simpleRegIOobject (Foam::debug::addDebuglbject , name)
{3
virtual ~add##Tag##ToDebug ()
{3
virtual void readData(Foam::Istream& is)
{
Type::debug = readLabel (is);

virtual void writeData(Foam::0Ostream& os) const
{

os << Type::debug;
}

PP A G G A A A A

}s;
add##Tag##ToDebug add##Tag##ToDebug_(Name)

Listing 337: Definition of the registerDebugSwitchWithName macro in debugName.H

39.10.3 A walk in the park: demonstrate some of this magic

In the above sections we took a look behind two very powerful pre-processor macros. So, what is this all for?

The turbulence models are very prominent examples for the usefulness of the run-time selection mechanism.
At compile-time — the time we or the OpenFOAM developers compile a solver — nobody knows, what exact
turbulence model we want to use for our simulation. Thus, we need to decide at run-time — at the time the
solver reads all the case information — which turbulence model to use. In order to save us from writing a solver
for each turbulence model, solvers can be written in a generic way. l.e. at the time we compile the solver
nobody, not even the compiler, cares about the actual turbulence model. The base class turbulenceModel tells
the compiler and the solver how a turbulence model works, that is all we need to know at compile time.

However, at run-time we need to decide which turbulence model to use. Fortunately, OpenFOAM takes care
of that and we do not need to bother. In some cases, however, we would like to know which turbulence model
is currently used. We could achieve this by either reading the case data'?® or by making use of the run-time
magic.

Listing 338 shows three lines of code. The intention behind this line is to print the return values of the
methods typeName_() and type (). These two methods were provided by the two macros dissected in Sections
39.10.1 and 39.10.2.

128This would mean re-programming existing functionality. The case data related to turbulence modelling was already read by
the constructor of the turbulence model. Manually reading this information again would result in some kind of code duplication.
The more elegant way to solve this problem is to access the information already gathered.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 238

Info << "Happy printf () debugging:" << endl;
Info << turbulence->typeName_() << endl;
Info << turbulence->type() << endl;

Listing 338: Applying some of the magic, the source code.

Listing 339 shows the results of the three lines of code of Listing 338. The code in Listing 338 presumes that
turbulence modelling is used in its generic form, as it is the case in e.g. pimpleFoam. In this example the
variable turbulence is of the type autoPtr<incompressible: :turbulenceModel> turbulence.

From the output we see, that the variable turbulence is indeed of type turbulenceModel. However, as the
class turbulenceModel is an abstract base class, no solver will ever actually use turbulenceModel itself'2?.
In this case, the solver used the kOmega turbulence model. Thus, the method type() returns the name of the
actual turbulence model. Here we also see the sense behind the distinction between the class name and the type
name as discussed some paragraphs above. In the example of an concrete class those are the same. For a base
class, however, this distinction makes perfect sence.

Happy printf () debugging:
turbulencelModel
kOmega

Listing 339: Applying some of the magic, the output.

40 General remarks on solver modifications

This section collects and documents solver modifications of the author.

40.1 Preparatory tasks

In order to be able to distinguish between the standard solvers and the solvers created by the user, a new
directory has to be created. We follow the scheme of the standard solvers, of which the source code resides in
OpenFOAM-2.1.x/applications/solvers. Therefore, we need to create some folders to place our sources in
user-2.1.x/applications/solvers. Listing 340 lists the necessary commands. Open a Terminal and type
the commands of the Listing to do the job.

cd $FOAM_INST_DIR
cd user-2.1.x
mkdir applications
cd applications
mkdir solvers

Listing 340: Create some directories

40.2 The next steps

When modifying a solver, there are some further steps necessary. These are described in Section 41.1. Although
these steps are for a specific example, they represent the general steps that are necessary. In short these steps
are

e copy the sources you want to base your new solver on

e make necessary adjustments to ensure that

— the new solver compiles at all

— the new solver does not corrupt existing solvers

Based on this steps the user can start to modify the sources in order to accomplish the intended function or
feature.

1298ee Section 39.8 for information about how turbulence models are organized in OpenFOAM.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 239

IX

41 twoPhaseLESFEulerFoam

The solver twoPhaseFEulerFoam can only use the k-e¢ turbulence model. The aim of this section is to document
the necessary modifications to create a version of the twoPhaseFulerFoam solver that is capable to use the LES
turbulence model. This new solver is called — like this section — twoPhaseLESFEulerFoam.

41.1 Preparatory tasks
41.1.1 Copy the sources

As the new solver shall be a modification of the existing twoPhaseEulerFoam solver, we need to copy the
OpenFOAM-2.1.x/applications/solvers/multiphase/twoPhaseEulerFoam folder to user-2.1.x/applications/solvers.
To do this via the Terminal

cd $FOAM_INST_DIR
cp -r OpenFOAM-2.1.x/applications/solvers/multiphase/twoPhaseEulerFoam user-2.1.x/applications
/solvers/twoPhaseLESEulerFoam

Listing 341: Copy the sources

41.1.2 Rename files

Next, some files have to be renamed. This may not be mandatory in order to successfully compile the solver.
However, for the sake of tidiness, all files containing the name of the solver have to be renamed. In this case, there
are two files. The source of the solver itself twoPhaseEulerFoam.C and readTwoPhaseEulerFoamControls.H.
The names of these two files change to twoPhaseLESEulerFoam.C and readTwoPhaseLESEulerFoamControls.H.

The latter of these files is included via an #include statement into the former one. Therefore, we need to change
the according statement in twoPhaseLESEulerFoam.C. Listing 342 shows the affected lines of code. The first
line is the old statement, which is commented. This line can also be deleted. However, the old statement is left
in order to show the original statement. The second line is the modified statement.

/* #include "readTwoPhaseEulerFoamControls.H" */
#include "readTwoPhaseLESEulerFoamControls.H"

Listing 342: Change the include statement

41.1.3 Adjust Make/files

In order not to corrupt the existing solver the file Make/files has to be adapted. Listing 343 shows how the
content has to look like. This file contains a list of *.C files that define the solver. In most cases there is only
one such file, e.g. twoPhaseEulerFoam.C. The entry beginning with EXE defines the full path to the executable.
The locations where changes have to be made are marked red in the Listing. These changes are:

¢ The name of the source file, twoPhaseLESEulerFoam.C instead of twoPhaseEulerFoam.C.
e The path to the executeable, FOAM_USER_APPBIN instead of FOAM_APPBIN.

o The name of the executeable!'®?, twoPhaseLESEulerFoam instead of twoPhaseEulerFoam.

twoPhaseLESEulerFoam.C

EXE = $ (FOAM_USER_APPBIN) /twoPhaseLESEulerFoam

Listing 343: Content of Make/files

The reason for all these changes lies in the compilation process. A new solver is compiled by simply typing
wmake in the Terminal. wmake reads from Make/files which file to compile and where to put the created
executable.

130The executeable does not necessarily have to have the same name as the source file. However, different names can lead to
confusion and make code maintenance harder. Therefore, it is strongly recommended to use consistent names, i.e. to name the
source file SOLVER.C and the executable SOLVER.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

240

41.1.4 The file Make/options

At this stage, there is no need to alter this file. The explanation of this file fits best at this location.
The file Make/options contains all compiler flags and parameters. Such parameters are, e.g.

o additional directories where included header files are located; the first group in Listing 344.
o libraries which have to be linked!! to the executable of the solver; the second group of entries.

For the sake of completeness, Listing 344 shows the content of the file Make/options. This file is read by wmake
to determine some parameters for the compiler. As you can see in Listing 345, the compiler is called with a
lot more options. However, all the options listed in Make/options are related to the specific solver, e.g. which
libraries the solver uses. Other options, e.g. the target platform, or the warning level, are elsewhere defined.

EXE_INC = \
-I../bubbleFoam \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/transportModels/incompressible/1lnInclude \
-IturbulenceModel \
-IkineticTheoryModels/1InInclude \
-IinterfacialModels/1lnInclude \
-IphaseModel/1lnInclude \
-Taveraging

EXE_LIBS = \
-1lEulerianInterfacialModels \
-1finiteVolume \

-lmeshTools \
-lincompressibleTransportModels \
-lphaseModel \
-lkineticTheoryModel

Listing 344: Content of Make/options

41.2 Preliminary observations

First of all we have to bear in mind, that twoPhaseFulerFoam is based on the solver bubbleFoam. This fact be-
comes important now. At this stage, the sources of twoPhaseEulerFoam have been copied to a user-2.1.x/applications/so!
Then all necessary adjustment have been made to prepare compilation.

Compilation

Now, if we try to compile our new solver twoPhaseL ESFEulerFoam, — which is acutally just a copy of twoPhaseEuler-
Foam, because there are no real modifications yet — then compilation fails.

+ wmake

Making dependency list for source file twoPhaseLESEulerFoam.C

could not open file createRASTurbulence.H for source file twoPhaseLESEulerFoam.C

could not open file wallFunctions.H for source file twoPhaseLESEulerFoam.C

could not open file wallDissipation.H for source file twoPhaseLESEulerFoam.C

could not open file wallViscosity.H for source file twoPhaseLESEulerFoam.C

SOURCE=twoPhaseLESEulerFoam.C ; g++ -m64 -Dlinux64 -DWM_DP -Wall -Wextra -Wno-unused-
parameter -Wold-style-cast -Wnon-virtual-dtor -03 -DNoRepository -ftemplate-depth-100 -I
../bubbleFoam -I/home/user/OpenFO0AM/OpenFO0AM-2.1.x/src/finiteVolume/1lnInclude -I/home/user
/0penFO0AM/OpenFOAM-2.1.x/src/transportModels/incompressible/1nInclude -IturbulenceModel -
IkineticTheoryModels/1lnInclude -IinterfacialModels/lnInclude -IphaseModel/lnInclude -
Iaveraging -IlnInclude -I. -I/home/user/OpenF0AM/0OpenFO0AM-2.1.x/src/0OpenF0AM/1lnInclude -I/
home/user/0OpenFO0AM/OpenF0AM-2.1.x/src/0Sspecific/POSIX/1lnInclude -fPIC -c $SOURCE -o
Make/linux64GccDPOpt/twoPhaseLESEulerFoam.o

In file included from twoPhaseLESEulerFoam.C:60:0:

createFields .H:139:37: schwerwiegender Fehler: createRASTurbulence.H: Datei oder Verzeichnis
nicht gefunden Kompilierung beendet.

make: *** [Make/linux64GccDPOpt/twoPhaseLESEulerFoam.o] Fehler 1

131 Compilation of C or C++ programs is usually done in two steps. First all files are compiled and then the object files generated
by the compiler are linked together to form the executable.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

Listing 345: Compilation error message

The error message says, that the file createRASTurbulence.H and other could not be found. In the
user-2.1.x/applications/solvers/twoPhaseLESEulerFoan directory, there are no such files. However, these
files are included in createFields.C which is included in twoPhaseLESEulerFoam.C.

The reason

The solution to this mystery lies in the first statement of this section. The twoPhaseEulerFoam solver is based
on bubbleFoam. If we have a look on the source directory of bubbleFoam (Listing 346) we find all files that are
missing when compiling twoPhaseL ESFEulerFoam.

user@host :~/OpenFOAM/OpenFOAM—2.1.x/applications /solvers/multiphase/bubbleFoam$ 1s
alphaEqn.H bubbleFoam.dep <createPhil.H createRASTurbulence.H kEpsilon.H

Make readBubbleFoamControls.H wallDissipation.H wallViscosity .H bubbleFoam.C
createFields.H <createPhi2.H DDtU.H liftDragCoeffs .H pEgqn.H UEqgns.H
wallFunctions .H write . H

user@host :~/OpenFOAM/OpenFOAM—2.1.x/applications /solvers/multiphase/bubbleFoam$

Listing 346: The source files of bubbleFoam

Now, there are source files of another solver included in twoPhaseEulerFoam. However, other than the
standard solver twoPhaseEulerFoam our solver fails to compile. The explanation is this string of characters
-I../bubbleFoam. This can be found in Listing 345 as a parameter in the call of g++. g++ is the C++
compiler of the GNU compiler collection. g++ is on Linux systems usually the standard C++ compiler. The
-TI flag tells the compiler where to find header files. In this case ../bubbleFoam is specified.

This path is valid for the standard solver of OpenFOAM. However, in our case, there is no folder called
bubbleFoam in the user2.1.x/applications/solvers directory. In the case of twoPhaseLESEulerFoam,
. ./bubbleFoam refers to user2.1.x/applications/solvers/bubbleFoam which does not exist.

The solution

In a first attempt to ensure that our new solver compiles we can copy the missing files from the the sources of
bubbleFoam to the sources of twoPhaseL ESFEulerFoam. We now can delete the line containing -I../bubbleFoam
in Make/options, because the included files are now located in the same directory as twoPhaseLESEulerFoam.C.
The directory of the main source file — of twoPhaseLESEulerFoam.C — is the a default location, where the
compiler looks for included files.

The files from bubbleFoam all deal with the k-e¢ turbulence model. In our case — we want to include the LES
turbulence model — we do not need this files. However, if we wanted to use the k-e¢ turbulence model, then copying
the missing file from the sources of bubbleFoam would be the proper thing to do. Listing 347 shows the neces-
sary commands for the Terminal. Notice the use of the wildcard *, this substitutes for zero or more characters.
Therefore, the first cp command copies the files wallDissipation.H, wallViscosity.H and wallFunctions.h
to the sources of our new solver. The second cp command copies the file createRASTurbulence.H. In this case
the wildcard is used to save typing effort.

cd $FOAM_INST_DIR

cp OpenFOAM-2.1.x/applications/solvers/multiphase/bubbleFoam/wall* user-2.1.x/applications/
solvers/twoPhaseLESEulerFoam/

cp OpenFO0AM-2.1.x/applications/solvers/multiphase/bubbleFoam/createRAS* user-2.1.x/
applications/solvers/twoPhaseLESEulerFoam/

Listing 347: Copy the missing file from the sources of bubbleFoam

41.3 How LES in OpenFOAM is used

If we want to integrate LES turbulence models into our solver, we should first have a look at other solvers.
Looking at the source code of a solver that supports LES models out of the box, will provide us with some
hints. Now, we have a look at the source code of pimpleFoam. pimpleFoam is a solver for an incompressible
fluid. Because twoPhaseEulerFoam is a solver two incompressible fluids which also uses the PIMPLE algorithm,

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

242

S

o

comparing twoPhaseFulerFoam with pimpleFoam is not a bad idea.

#include "fvCFD.H"

#include "singlePhaseTransportModel.H"
#include "turbulenceModel.H"

#include "pimpleControl.H"

#include "IObasicSourcelList.H"

Listing 348: Including turbulence: pimpleFoam

The second and the third line are required for using a generic turbulence model. The header file singlePhaseTransportMoc
provides a transport model and the file turbulenceModel.H provides all definitons of the generic turbulence
model.

41.4 Integrate LES
41.4.1 Include required models

In order to make use of the LES turbulence model we need to include the header file singl ePhaseTransportModel .H
because the turbulence models of OpenFOAM make use of the transport model. Instead of the file turbulenceModel .H
we will include the file LESModel.H. This file defines the base class for all LES turbulence models.

Listing 349 shows the first group of include statements of the file twoPhaseLESEulerFoam. The last two
lines include the transport model and the LES model.

#include "fvCFD.H"

#include "MULES.H"

#include "subCycle.H"

#include "nearWallDist.H"

#include "wallFvPatch.H"

#include "fixedValueFvsPatchFields.H"
#include "Switch.H"

#include "IFstream.H"
#include "OFstream.H"

#include "dragModel.H"
#include "phaseModel .H"
#include "kineticTheoryModel.H"

#include "pimpleControl.H"
#include "MRFZones.H"

// for using LES
#include "singlePhaseTransportModel.H"
#include "LESModel.H"

Listing 349: The first group of include statements in twoPhaseLESEulerFoam

41.4.2 Replace the k-¢ model

In the file twoPhaseLESEulerFoam we need to replace the statement that includes the file kEpsilon.H. This file
contains the k-e¢ turbulence model. Since we want to use the LES models provided by OpenFOAM we simply
copied from other solver, see Listing 170.

In line 24 of Listing 351 we write a similar instruction like in e.g. pimpleFoam. However, the variable
sgsModel is of type LESModel, whereas in the source code of solvers that use generic turbulence modelling this
line would read turbulence->correct().

In line 25 we update the field nuEff2, which is the effective viscosity of the continuous phase. This in-
struction is necessary because twoPhaseFulerFoam uses a distinct field for the effective viscosity. Other solvers
access this quantity via their turbulence model. To keep the number of changes in the source code low, we stick
to the original code of twoPhaseEulerFoam as far as it is feasible.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 243

// --- Pressure-velocity PIMPLE corrector loop
while (pimple.loop())
{

#include "alphaEqgn.H"

#include "liftDragCoeffs.H"

#include "UEgns.H"

// --- Pressure corrector loop
while (pimple.correct())
{

#include "pEgn.H"

if (correctAlpha && !pimple.finallter ())
{
#include "alphaEqn.H"
}
}

#include "DDtU.H"

if (pimple.turbCorr ())

{
//#include "kEpsilon.H"
sgsModel ->correct () ;
nuEff2 = sgsModel->nuEff ();

Listing 350: The main loop in twoPhaseLESEulerFoam

41.4.3 Create a LES model

Now, we need to modify the file createFields.H. First we need to comment or delete the include statement

including the file createRASTurbulence.H. Then, we need to create a transport model and a LES model.
Finally, we need to copy the instructions that create the fields nuEff1 and nuEf£2 from the file createRASTurbulence .H

into the file createFields.H. The question of how to model turbulence in two-phase flows is completely an-
swered. So, this is just one possibility. See Section 44.3 for a discussion about turbulence in two-phase solvers.

/* lots of code */
//#include "createRASTurbulence.H"
/* even more code */

// mnew for LES
singlePhaseTransportModel fluid(U2, phi2);

autoPtr<incompressible::LESModel> sgsModel
(

incompressible::LESModel::New(U2, phi2, fluid)
)

// new from createRASTurbulence.H
Info<< "Calculating field nuEff1\n" << endl;
volScalarField nuEff1

(

I0object

(
"nuEff1",
runTime.timeName (),
mesh,
IOobject ::NO_READ,
I0object::NO_WRITE

) 3

sgsModel->nut () + nul
// nuEffl will be overwritten at the end of the file
);

IX

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

244

31
32
33

Info<< "Calculating field nuEff2\n" << endl;
volScalarField nuEff2
(
I0object
(
"nuEff2",
runTime.timeName (),
mesh,
I0object::NO_READ,
I0object:: NO_WRITE
),
sgsModel ->nut () + nu2
);

// set nuEffl according to Jakobsen 1997
nuEffl1 = rhol*nuEff2/rho?2;

Listing 351: The main loop in twoPhaseLESEulerFoam

41.4.4 Make ready for compiling

In order to be ready to compile the new solver, we need to adjust some more files. Listing 352 shows the neces-
sary modifications of the file Make/options. These adjustments are necessary in order to enable the compiler
to find all included files.

EXE_INC = \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$ (LIB_SRC)/transportModels/incompressible/1lnInclude \
-I$ (LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-IkineticTheoryModels/1nInclude \
-IinterfacialModels/1lnInclude \
-IphaseModel/1lnInclude \
-I$(LIB_SRC)/turbulenceModels \
-I$(LIB_SRC)/turbulenceModels/incompressible/LES/LESModel \
-I$(LIB_SRC)/turbulenceModels/LES/LESdeltas/1lnInclude \
-Iaveraging

EXE_LIBS = \
-lEulerianInterfacialModels \
-1finiteVolume \

-lmeshTools \
-lincompressibleTransportModels \
-lphaseModel \
-lkineticTheoryModel \
-lincompressibleLESModels

Listing 352: Content of Make/options

41.5 Compile

The solver can be compiled by invoking wmake.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 245

Part X
Theory

This section covers more detailled topics and tries to look under the hood of OpenFOAM from a non-programming
view.

42 Discretization

42.1 Temporal discretization

42.2 Spatial discretization

The purpose of spatial discretization schemes is to compute the face values of fields whose values are stored at
the cell centre. The face values are then used e.g. for computing the spatial derivatives.

42.2.1 wupwind scheme

An upwind scheme determines the face value of a quantity simply by choosing the cell centered value of the cell
that is located upwind of the face in question.

42.2.2 1linearUpwind scheme

The linearUpwind scheme is equivalent to FLUENTSs Second-Order Upwind Scheme.

42.2.3 QUICK scheme
The FLUENT Theory Guide [6] states:

For quadrilateral and hexahedral meshes, where unique upstream and downstream faces and cells
can be identified, ANSYS FLUENT also provides the QUICK scheme for computing a higher-order
value of the convected variable at a face.

42.2.4 MUSCL scheme

42.3 Continuity error correction

In the governing equations of some solvers in OpenFOAM - e.g. in twoPhaseFEulerFoam of OpenFOAM-2.3.x —
we find a special correction for the continuity error.

42.3.1 Conserving the form

Before we start our considerations, we take a closer look on the conservation and nonconservation form of a
transport equation. First, we recall the definition of the substantial derivative:

D 0
For example applied to an arbitrary scalar K
DK 0K
—_— = - VK 171
D 5 +u-V (171)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 246

Continuity equation

As a first example we look up the differential form of the continuity equation.

conservation form: gﬁ +V - (pu)=0 (172)
. Dp
nonconservation form: DI +pV -u= (173)

Both forms are equivalent to each other, since we can express one equation easily by the other one with the
help of some simple mathematical operations.

dp

E-&-V (pu) =0 (174)
0
af/t)—I—Vp'u-i-pV'u:O (175)
0
67[t)+u - Vp4+pV -u=0 (176)
—_———

g

P

Dt

Transport equation

For the next example we use the right hand side of the transport equation of enthalpy in a multiphase problem.
This example is motivated by the energy equation of twoPhaseEulerFoam in OpenFOAM-2.3.x. We could also
have used the momentum equation, however, we want to avoid confusion by the repeated occurance of the
velocity.

We look up the energy equation for multiphase flows from a textbook or other resources [6, 5]. For the sake of
brevity, we state only the left hand side of the equation. The equation we looked up (Equn. (177)) happens to be
formulated in the conservation form. We now rearrange the equation in order to gain the nonconservation form.

Oayprhy,

T + A2 (Ozkpkukhk) =RHS (177)

by partial derivation of the LHS, we gain

) oh
Ogtpk hy, + ozkpk&Ttk + eV - (arprug) +agprug - Vhy = RHS (178)
p oh
hi, < Ogctpk +V- (Oékpkuk>> + i (3: +u - th) = RHS (179)
1 11

We now pay attention to the term marked by I, we recognize the phase-continuity equation which equals
zero. The term marked with IT is the substantial derivative of hy. Thus we gain with Eqn. (180), the noncon-
servation form of the energy equation.

h
appr (66: tuy th> = RHS (180)
Dhy,
akpkiDt = RHS (181)

All the operations we applied to get from Eqn. (177) to (180) applied only to the left hand side. Thus, the
distinction in conservation and nonconservation form applies only to the left hand side of the equation.
42.3.2 Continuity error

In theory and in the mathematical sense the conservation and nonconservation forms are equivalent. However,
in we do not solve the s we gain from physics, but the linear equation system stemming from discretizing those

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

247

[N N R

ST U VR

PDEs. The resulting linear equation system we solve is not necessarily a direct representation of our initial
PDEs. The difference between the (exact) solution of the system of algebraic equations and the (unknown)
solution of the mathematical model (the PDEs) is generally referred to as discretisation error [26].

We now use Eqns. (177) and (180) to to some rearrangement.

OQkPE Mk +V - (Olkpkukhk) = Pk Yk +ug - Vhy) + hy kPk IRV (Oékpkuk) (182)
Oagprh Ao oh

We now want to solve the energy equation. For this we choose the nonconservative form (180).

h
Pk (88: tuy m) — RHS (180)

Using Eq. (183), we could also write

Oagpr
ot

O pihy
ot

+ V- (akpkukhk) — hk (+ AVAR (ozkpkuk)) =RHS (184)

Mathematically, Eqns. (180) and (184) are equivalent. However, when we now discretize both equations in
order to solve them numerically, the left hand sides of Eqns. (180) and (184) might actually be different, as the
discretised phase continuity equation might not equal zero.

We now take a break from math and take a look into the source code of twoPhaseEulerFoam-2.3.x. In Listing
354 we see the first terms of the energy equation of one phase. For a discussion on the full energy equations see
Section 26.5.

In Lines 3 and 4 of Listing 354 we see the left hand side of Eqn. (184).

fvScalarMatrix helEqn
(
fvm::ddt (alphal, rhol, hel) + fvm::div(alphaRhoPhil, hel)
- fvm::Sp(contErrl, hel)
/* other stuffx*/
)
Listing 353: The first terms of the energy equation in the file EEqns.H of twoPhaseFulerFoam.
volScalarField contErri
(
fvc::ddt (alphal, rhol) + fvc::div(alphaRhoPhil)
- (fvOptions (alphal, rhol)&rhol)
)
Listing 354: The definition of the continuity error in the file twoPhaseEulerFoam.C.

We can create more resemblance if we repeat Eqn. (184) and name some of the terms. In Listing 354
the definition of the continuity error differs slightly from Eqn. (184). This is due to the fact, that the solver
considers phase sources, see Line 4 of Listing 354.

dagprh foJe
$ + V- (awprurhy) —hg < aktpk +V - (akpkuk)) =RHS (184)
—_————
fvn: :ddt (alphat, rhol, hel) fvm: :div(alphaRhoPhil, hel) -
X This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 948

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

S I

© o N o wu

11
12
13
14
15
16
17
18
19

[N N

43 Momentum diffusion in an incompressible fluid

43.1 Governing equations

In Section 24.1 we discussed the governing equations of a solver for incompressible fluids.

g—ltl +V(uu)+V - (deV(Reff)) =-Vp+Q (53)
=div(dev(Re/{))

R = - (Va+ (Vu)7) (47)

%‘: +V(uu) +V - (dev(—v (Vu+ (Vu)T))) = —Vp+Q (54)

The momentum diffusion term is handled by the turbulence model.

\E (dev(Reff)) & turbulence->divDevReff (U)

=div(dev(Reff))

43.2 Implementation

All turbulence model of OpenFOAM are based on a generic turbulence model class. Figure 65 in Section 39.8
shows a class diagram. There, it is shown, that all RAS turbulence model classes as well as all LES turbulence
model classes are derived from the same base class. A lot of solvers of OpenFOAM allow the user to choose
between laminar simulation as well as RAS or LES turbulence modelling. Therefore, by the time of writting the
source code, nobody could have known, which turbulence exactly will handle the momentum diffusion term.

To overcome such problems, modern programming languages support a technique called polymorphism. In
the source code the instruction turbulence->divDevReff (U) is called to compute the diffusive term. This
instruction means, that the method divDevReff () of the object turbulence is called.

// Solve the Momentum equation

tmp<fvVectorMatrix> UEqn
(

fvm::ddt (U)

+ fvm::div(phi, U)

+ turbulence->divDevReff (U)
)

UEqn () .relax () ;

sources.constrain (UEqn());
volScalarField rAU(1.0/UEqn () .AQ));
if (pimple.momentumPredictor ())

{

solve (UEqn() == -fvc::grad(p) + sources(U));
}

Listing 355: The file UFEqn.H of pimpleFoam

The source code of the file createFields.H tells us, that the object turbulence is of the data type
turbulenceModel.

singlePhaseTransportModel laminarTransport (U, phi);

autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)

)

Listing 356: The file createFields.H of pimpleFoam

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 249

By the time of compilation, it is guaranteed that the object turbulence is of the data type turbulenceModel.
However, turbulence will never actually be of the data type turbulenceModel. It will be of a data type derived
from turbulenceModel. The decision which exact method divDevReff () has to be called, will be made at run-

time based on the actual type of turbulence.

Listing 357 shows the declaration of the virtual method divDevReff (). See Section 39.8 for a discussion on
virtual methods. Listing 358 shows how this method is actually implemented by the standard k-e¢ turbulence

models of OpenFOAM.

//- Return the source term for the momentum equation
virtual tmp<fvVectorMatrix> divDevReff (volVectorField& U) const = 0;

Listing 357: Declaration of the virtual Method divDevReff in turbulenceModel. H

tmp<fvVectorMatrix> kEpsilon::divDevReff (volVectorField& U) const

{
return
(
- fvm::laplacian(nuEff (), U)
- fvc::div(nuEff () *dev(T(fvc::grad(U))))
)
}

Listing 358: Implementation of the virtual Method divDevReff in kEpsilon. H

The calculation of divDevReff () is equivalent to Eq. (54).

divDevReff =V - (dev(—v (VU + (VU)T)))
=-V - (VU)- V- (y(vU)T)

laplacian(nu,U) div(nu*dev(T(grad(U))))

The momentum diffusion term is most probably split into two parts for numerical reasons.

44 The incompressible k-¢ turbulence model

44.1 The k-¢ turbulence model in literature

The governing equations for the k-e model for a single phase are taken from Wilcox [52].

Eddy viscosity

k2
pr = pCp—
€
Turbulent kinetic energy
ok ok o 8Uﬁ 0 KT ok
Dissipation Rate
Oe Oe e OU; €2 0 pur . Oe
Par T PUj%j = CdETijaTCj - Cezpz + oz, {(+ ae)(’)xj]

Closure coefficients
Ce = 1.44, Ceo =1.92, C, =0.09, or = 1.0, o =1.3
The transport equations for k£ and € are reorganized to follow the basic structure

local derivative + convection + diffusion = source & sink terms

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

(185)

(186)

(187)

(188)

250

Turbulent kinetic energy

Ui — — — — | =T - 189
ot T 70z Oxj (o’ 0x; Tjﬁmj p (189)
——
Dy, G
Dissipation Rate
Oe Oe 0 ur ., Oe e 0OU; €2
= i— — —)=— | =Ca—+Tijm— —Cep— 190
p8t+p]ij afﬂj |:(O'E)al'j:| 1kTJ6.’Ej 2pl€ ()
——
D. G
Diffusivity constants
Dy =pu+ P (191)
Ok
D.=pu+ T (192)
O¢

The constant expressions in the diffusive terms are combined into the diffusivity constants Dy and D.. The
first term on the right hand side of the turbulent kinetic energy equation is the production of turbulent kinetic
energy G.

44.2 The k-¢ turbulence model in OpenFOAM
44.2.1 Governing equations

The governing equations of the k-e¢ model of OpenFOAM are basically the same equations as in Section 44.1.
The vector notation is used in this section because the syntax OpenFOAM uses strongly resembles the vector
notation. However, there are some modifications to the equations.

First, the transport equations for k and € are divided by the density p. Therefore, all terms containing
viscosity contain the kinematic viscosity v instead of the dynamic viscosity p.

Secondly, the standard k-e model of OpenFOAM has eliminated the model constant o. Since the value of
this constant is one, this constant has been elimininated. This does not change the behaviour of the model.
However, if the user tries to change this model constant, nothing actually happens. See Section 19.3.2 for a
discussion and an example.

Finally, the convection term is converted into two term by the product rule of differentiation. See Eqn. (194).

Eddy viscosity, see Listing 359

Hr = prvr
k‘2
vr = Cuf (193)
€
Turbulent kinetic energy, see Listing 360
ok ok
M U 22 =U - Vk
UJ 8l‘j ox v
Ok V- (Uk)—(V - U)k (194)
ox
ok
E—FV'(Uk)—(V~U)k—V'(Dka):G—6 (195)
Dissipation Rate
Oe 1 €2
aJrV - (Ue) = (V- U)e—-V - (D€Ve):ClGE—C’2? (196)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

© 0 N O U A W N e

e e
B W N = O

Diffusivity constants - Note that o; has been eliminated from the equations

Dy =DkEff =v + vy (197)
D, = DepsilonEff = v + V—T (198)
O
Closure coefficients - default values
Ci1 =1.44, Cy =1.92, C, =0.09, o.=1.3 (199)

The default values of the model constants can be found in the constructor of the respective turbulence model
class.

44.2.2 The source code

Listing 359 shows the calculation of the eddy viscosity. A (too) short glimpse on the code may lead to confusion,
as the function sqr () meaning taking a variable to the power of two looks similar to sqrt (), which is the square
root.

Listing 360 shows the transport equation for the turbulent viscosity. The last term on the right hand side
is expanded.

k (200)

fvm: :Sp(epsilon/k, k)

nut_ = Cmu_x*sqr(k_)/epsilon_;

Listing 359: Calculation of the eddy viscosity

tmp<fvScalarMatrix> kEqn

(
fvm::ddt (k_)
+ fvm::div(phi_, k_)
- fvm::Sp(fvc::div(phi_), k_)
- fvm::laplacian(DkEff (), k_)
G
- fvm::Sp(epsilon_/k_, k_)

)

Listing 360: Transport equation for the turbulent kinetic energy

Constructor

Listing 361 shows the first lines of the constructor of the kEpsilon class. The constructor receives five argu-
ments. After the colon (in line 9), the initialisation list follows. This list contains also the default values of the
model constants. See Section 38.5 for details about constructors in C++. In line 18 the default value of the
model constant C), is defined.

kEpsilon::kEpsilon

(
const volVectorField& U,
const surfaceScalarField& phi,
transportModel& transport,
const word& turbulenceModelName,
const word& modelName

RASModel (modelName, U, phi, transport, turbulenceModelName),
Cmu_

(

dimensioned<scalar>::lookupOrAddToDict

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 252

15
16
17
18
19
20
21

(
"Cmu",
coeffDict_,
0.09
)
),

/* code continues */

Listing 361: The constructor of the kEpsilon class

44.3 The k-¢ turbulence model in bubbleFoam and twoPhaseEulerFoam

The k-€¢ turbulence model is hardcoded in bubbleFoam and twoPhaseEulerFoam. This means, that these solvers
do not use the generic turbulence modelling other than most OpenFOAM solvers.

The question of turbulence modelling in dispersed two-phase flows is not fully answered yet. There are
several strategies:

Per phase The turbulence is modelled for both phases individually.

Mixture The turbulence is modelled based on mixture quantities.

Liquid phase Turbulence is modelled based in the quantites of the liquid phase. The turbulence of the
dispersed phase is either neglected or considered by a model constant.

44.3.1 Governing equations

The k-€ turbulence model of bubbleFoam and twoPhaseEulerFoam is in some aspects different than the standard
k-e turbulence model of OpenFOAM.

1. The diffusivity constants are calculated from the effective viscosity. Compare Eqns. (191, 192) and
(206, 207)

2. The model constants o and o, are replaced by their reciprocal values.

3. Other than in the standard k-e model, the model constant oy, is not dropped. By defining a value for the
constant oy j = !/ox, a value for oy, is assigned.

Turbulence modelling in bubbleFoam and twoPhaseEulerFoam is based on the liquid quantities. Turbulence of
the gas phase is considered by the use of the model constant C;. This constant connects the turbulent viscosity
of the liquid and the gas phase. By setting this constant to zero, turbulence is ignored in the gas phase.

Eddy viscosity

k’2
Vo = Cuf (201)
€
Voeff =V2+ Vo (202)
Weps =11+ Cluar (203)
Turbulent kinetic energy, see Listing 360
ok
a + \AR (ng‘) — (V ‘ Ug)k -V - (al,kVQ,efka) =G—c¢ (204)
Dissipation Rate
Oe 1 €?
E + V- (Uge) - (V : UQ)E -V - ((X175V2,effV€) = ClG% — CQ? (205)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 253

Diffusivity constants - Note the different definition

1
Q= —
Ok
1
al e = —
Oc
Vae
Dy = ay g epp = 241 (206)
Ok
De = ayevzefs = VQUA (207)
Closure coefficients - default values
Cy =1.44, Cy =1.92, Cyu = 0.09, oy =1, oy, = 0.76923 (208)

44.3.2 Source code

The transport equations of bubbleFoam and twoPhaseEulerFoam reside in the file kEpsilon.H. Listing 362 shows
the most important lines of kEpsilon.H.

1 tmp<volTensorField> tgradU2 = fvc::grad(U2);
2 volScalarField G(2*nut2*(tgradU2() && dev(symm(tgradU2()))));
3

4 // Dissipation equation

5 fvScalarMatrix epsEqn

6 (

7 fvm::ddt (epsilon)

8 + fvm::div(phi2, epsilon)

9 - fvm::Sp(fvc::div(phi2), epsilon)

10 - fvm::laplacian

11 (

12 alphalEps*nuEff2, epsilon,

13 "laplacian(DepsilonEff ,epsilon)"

14)

15 ==

16 Cl1*G*epsilon/k

17 - fvm::Sp(C2*epsilon/k, epsilon)

18);

20 // Turbulent kinetic energy equation
21 fvScalarMatrix kEqn

22 (

23 fvm::ddt (k)

24 + fvm::div(phi2, k)

25 - fvm::Sp(fvc::div(phi2), k)
26 - fvm::laplacian

27

28 alphalk*nuEff2, k,

29 "laplacian (DKEff ,k)"
30)

31 ==

32 G

33 - fvm::Sp(epsilon/k, k)
34);

36 //- Re-calculate turbulence viscosity
37 nut2 = Cmux*sqr(k)/epsilon;

Listing 362: The turbulent transport equations of the bubbleFoam and twoPhaseEulerFoam solver

44.4 Modelling the production of turbulent kinetic energy

When comparing the turbulent equations From literature and the sources, the definition of the production of
turbulent kinetic energy shows great differences.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 254

44.4.1 Definitions from literature and source files

The production of turbulent kinetic energy seems to be differently defined.

Thesis of H. Rusche [42] - the basis of bubbleFoam and twoPhaseEulerFoam

Py =2u5.5¢ (VU, - dev (VU, + (VU,)T)) (209)
Source code - kEpsilon.H of bubbleFoam - See Line 2 Listing 362
G = 2vp (VUsz : dev(sym(VUy,))) (210)
Source code - standard k-¢ model, kEpsilon.C
G = 2up|sym(VU)|? (211)
Ferzinger Peric [25]
P=urVU: (VU + (VU)T) (212)
Wilcox [52]
G=urVU: (VU + (VU)T) - %pkl VU (213)

Some definitions use the dynamic viscosity and some others use the kinematic viscosity. For incompressible
fluids, this is no major difference between the definitions.

44.4.2 Different use of viscosity

Eq. (209) is the only definition that makes use of the [42] effective viscosity instead of the turbulent viscosity.
The reason for this is not explained.

However, the FLUENT Theory Guide [6] states that the effective viscosity is used to calculate the production
term when high-Reynolds number versions of the k-e¢ model are used. It is not further specified what is meant
with high-Reynolds number versions of the k-e¢ model.

44.4.3 Notation

The definitions in Section 44.4.1 are written in vector notation. However, there seems to be a minor flaw in Eq.
(209). There

Py =2u5.55 (VU, - dev (VU, + (VU,)T)) (209)

The dot can not denote an inner product. The result only has the correct dimension, if the dot denotes a
contraction. Therefore, the equation should read

Py =2v5.5¢ (VUb s dev (VUb + (VUb)T)) (214)

44.4.4 Definitions from literature

The definition of the production term in Eq. (212) and (213) differ only in the last term.

G =purVU : (VU, + (VU,)") — gpkl : VU (213)
Using the following identities, the contraction can be replaced by an inner product
I:VvU=t(VU)=V - U (215)
For incompressible fluids the divergence of the velocity must be zero due to the continuity equation
V- -U=0 (216)
G =purVU : (VU, + (VU,)") — gpkl : VU (217)
<

=0
Therefore, Eqns. (212) and (213) are identical if the fluid is incompressible. We now can examine the
differences of the definitions of the production term, using Eq. (212) as reference equation.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

255

44.4.5 Definitions of Rusche and bubbleFoam

The solvers bubbleFoam and twoPhaseEulerFoam are based on the thesis of H. Rusche [42]. However, the pro-
duction term is defined differently. Compare Eq. (209) and (210).

Py =2u5 055 (VU : dev (VU, + (VU,)7)) (209)
G = 2vp (VUy : dev(sym(VUy,))) (210)
We ignore the different symbols for the velocity of the continuous phase
U, =U, (218)
The second operator of the contraction is different in both equations. We ask, if the following equation holds
VU, : dev(sym(VU,)) = VU, : dev (VU, + (VU,)T) (219)

With the following identities the question is easily answered

dev(T) =T — %tr(T) (220)
sym(T) = % (T + (T)7) (221)
dev (sym(VUy)) = dev (; (VU, + (VUZ)T)> (222)
dev (sym(VUy)) = %dev (VU2 + (VU2)") (223)
dev (sym(VUs)) = % ((VUz +(VU)T) — étr(VUz + (VUZ)T)> (224)

—dev(VU3 +(VU3)T)
dev (sym(VUy)) = %dev (VU2 + (VU2)") (225)

This leads to the answer

VU, : dev (sym(VU,)) = %VUb tdev (VU + (VUp)") (226)

The definition of the production term in the source code differs in two ways from the definition in the source
code

1. The use of different viscosities, see Eqns. (209) and (210).
2. A factor of 2, compare Eqns. (219) and (226)

The reason for this differences is not clear. H. Rusche refers to an article which is not available to the author.

44.4.6 Definitions of Ferzinger and bubbleFoam

We now compare the definitions of Ferzinger and bubbleFoam. The definition of Ferzinger is — like the equations
in most other book about turbulence — for single-phase systems. However, bubbleFoam is a two-phase solver.
The question of considering turbulence in two-phase systems is not answered yet. bubbleFoam considers turbu-
lence for the continuous phase by the use of a turbulence model. The turbulence of the disperse phase is linked
to the continuous phase. Therefore, turbulence model equations of bubbleFoam are quite similar to single-phase
turbulence equations.

G = 2vp (VUs : dev(sym(VUz))) (210)
P=purVU: (VU + (VU)T) (212)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 256

We ignore the different viscosities and ask ourselves

VU : (VU + (VU)T) £ 2(VU, : dev(sym(VU,))) (227)
Inserting Eq. (225) gives
VU : (VU + (VU)") =2(VU, : dev(sym(VUy))) (228)
N—_———
=1dev(VUz2+(VU2)T)
VU : (VU + (VU)") = VU, : dev (VU3 + (VU2)") (229)

Now we insert Eq. (220) into the rhs of Eq. (229)
1
VU: (VU + (VU)T) =VU: (dev(VU +(vU)T) + 3 tr(VU + (VU)T)> (230)

Using the following identities and Eq. (215)

tr(A 4+ B) = tr(A) + tr(B) (231)

tr(AT) = tr(A) (232)

I:VU=tx(VU)=V - U (215)

VU: (VU+ (VU)") =VU: (dev(VU +(VvU)T) + g(v - U)) (233)

The second term of the rhs vanishes according to the continuity equation for an incompressible fluid
2
VU: (VU + (VU)") =VU: (dev(VU + (VU)T) + 2 (V - U)) (234)
3 —
vV © U=0

Eq. (235) now resembles Eq. (229). Therefore, we proofed that the definition of bubbleFoam is equivalent to
the definition of Ferzinger

VU : (VU + (VU)") = VU : dev (VU + (VU)7) (235)

44.4.7 Definition of standard k-¢ of OpenFOAM

We now compare the definition of the production term of the standard k-e model implemented in OpenFOAM
with the definition found in [25].

Source code - standard k-e model, kEpsilon.C
G = 2up|sym(VU)|? (211)
Ferzinger Peric [25]
P=vpVU: (VU + (VU)") (212)

Starting from Eq. (212), we will use Eq. (235) and Eq. (225)

VU : (VU + (VU)") = VU : dev (VU + (VU)") (235)
dev (VU + (VU)T) = 2 dev (sym(VU)) (225)

to gain
VU : (VU + (VU)") =2VU : dev (sym(VU)) (236)

We use definition (237) to change Eq. (211)

lsym(VU)? = sym(VU) : sym(VU) (237)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 257

Now we pose the question
sym(VU) : sym(VU) = VU : dev (sym(VU)) (238)

The lhs of Eq. (238) corresponds to Eq. (211). The rhs of Eq. (238) was derived from Eq. (212). Now, we use
some identities

dev(T) =T — %tr(T) (220)
tr(sym(T)) = tr(T) (239)

to reformulate the rhs of Eq. (238)
VU : dev (sym(VU)) = VU : (sym(VU) - ;)H(VU)) (240)

As we now concentrate on incompressible single-phase problems, we can eliminate the second term of the rhs
of Eq. (240) by the use of Eq. (215)

I:VU=t(VU)=V -U=0 (215)
We now have
VU : dev (sym(VU)) = VU : sym(VU) (241)
The following equation remains, which is easily proofed by some tensor calculus
sym(VU) : sym(VU) = VU : sym(VU) (242)

Every tensor can be decomposed into a symmetric and a skew part

T = sym(T) + skew(T) (243)
sym(T) = % (T+T7) (244)
skew(T) = % (T -T7) (245)
Therefore, we can write
T : sym(T) = sym(T) : sym(T) + skew(T) : sym(T) (246)

The following properties of skew tensors let the second contraction vanish

skew (T) : sym(T) (247)
.
Qi = 0 (248)
aij = —aji (249)
skew(T) : sym(T) = a;58;; =0 (250)
Finally, we obtain
T : sym(T) = sym(T) : sym(T) (251)

Therefore, we proofed that the definition of the standard k-¢ model is equivalent to the definition of Ferzinger.

45 Some theory behind the scenes of LES
45.1 LES model hierarchy

The large eddy simulation is based on the spatial filtering of the governing equations. Similar to the Reynolds-
averaged modelling strategy (filtering with respect to time), the large eddy modelling strategy requires some

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

258

closure models. In principle, the velocity is decomposed into a grid-scale and a sub-grid scale portion. The
grid-scale portion is resolved by the governing equations. The sub-grid scale portion — or the influence of the
sub-grid scale portion on the resolved velocity — needs to be modelled.

Similar to the RANS approach, the closure terms appear in the stress terms of the momentum equations.
There are several modelling strategies to close the equations. The class hierarchy of the LES models of Open-
FOAM reflects the different approaches. Figure 67 shows the first layer of the class hierarchy of the LES models
in OpenFOAM. First layer means that a class derived from the abstract class LESModel may be an abstract
class itself and therefore be the base for other classes!'32133,

LESModel

v y v

DESModel GenSGSStress laminar

GenEddyVisc kOmegaSSTSAS scaleSimilarity

Figure 67: First layer of the class hierarchy of the LES models of OpenFOAM

The classification according to Figure 67 is not the only possible way to divide all existing LES models into
categories.

45.2 Eddy viscosity models

One of the most common approaches of closing the governing equations when using an LES turbulence mod-
elling strategy are eddy viscosity models. Like the RANS turbulence models, the eddy viscosity models make
use of the Boussinesq hypothesis. The contribution of the sub-grid scale terms is modelled by an additional
viscosity. The effective viscosity is the sum of the laminar viscosity and the sub-grid viscosity.

Veff =V +Vsags (252)

45.2.1 Class hierarchy

The base class for all eddy viscosity models is GenEddyVisc. Figure 68 shows the class hierarchy with focus on
GenEddyVisc.

45.2.2 Classification

The eddy viscosity models can be divided further based on the way the sub-grid viscosity is computed and the
complexity of the model.

132In a class diagram a class with an italic written name is an abstract class. A class with an upright written name is an actual
class.

133This shows the great advantage of object oriented programming. The class hierarchy of the code reflects the relation between
the objects in reality, e.g. every eddy viscosity model is an LES model, but not every LES model is an eddy viscosity model.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 259

LESModel

v y

laminar GenEddyVisc

v v v y

dynLagrangian Smagorinsky oneEqEddy dynOneEqEddy

spectEddyVisc

homogeneousDynOneEqEddy

LT

homogeneousDynSmagorinsky

v v

Smagorinsky?2 mixedSmagorinsky

Figure 68: Class hierarchy of the eddy viscosity models in OpenFOAM

constant coefficient dynamic coefficient
. insk h D insk
algebraic model Smagorllns y omogeneous ynSmellgorlns v
Smagorinsky2 spectEddyVisc
oneEqEddy dynOneEqEddy
one equation model homogeneousDynOneEqEddy
dynLagrangian

Table 7: Comparison of the eddy viscosity models of OpenFOAM

45.2.3 Eddy viscosity

For dimensional reasons, the eddy viscostiy must be a product of a length and a velocity scale [16]. Eq. (254)
shows the generic equation for the sub-grid viscosity. An additional model constant is the third term in the
product. The way the model constant is computed as well as the choice for the length and velocity scales is
determined by the model.

Il’l2 m

[vsgs] = - -5 W (253)

vsas = Csas lsas qsas (254)

A choice that is common to a number of eddy viscosity models in OpenFOAM is to choose the filter width
as the length scale and the square root of the sub-grid kinetic energy as teh velocity scale. Algebraic models
usually calculate the sub-grid kinetic energy from known quantities, e.g. based on the velocity gradient. One
equation models typically solve a transport equation for the sub-grid scale kinetic energy.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 260

[SAT OC R VR

S

lsas = A (255)
[lsgs] = m (256)

gscs = Vksas (257)

lgscs]| = \/f = ? (258)

The Smagorinsky eddy viscosity is one of the simplest LES models. From Table 7 we see that this is an algebraic
model with a constant model coefficient. This model was published 1963 [44].

Eq. (259) shows the definition of the sub-grid scale viscosity according to the Samgorinsky model as it can
be found in literature [16].

45.2.4 The Smagorinsky LES model

vsas = (CsA)?[S| (259)
with

S = sym(Vu) = sym(grad(u))

IT|=VT: T

Some rearrangement of Eq. (259) is necessary to match the form of Definition (254) and (257). Eqns. (260)
to (262) show the necessary steps to match the generic definition of vggs.

UVsGgs — Cgv A A\/ S:S (260)
lsas 4gscs

gsas = Vksgs = AVS : S (261)

= ksgs = A2 S:S (262)

Implementation

The implementation in the source code differs a little from the equations above.

void Smagorinsky::updateSubGridScaleFields (const volTensorField& gradU)
{

nuSgs_ = ck_x*xdelta()*sqrt(k(gradlU));

nuSgs_.correctBoundaryConditions () ;

}

Listing 363: The function updateSubGridScaleFields() in the file Smagorinsky.C

tmp<volScalarField> k(const tmp<volTensorField>& gradU) const
{

return (2.0%ck_/ce_)*sqr(delta())*magSqr (dev(symm(gradlU))) ;
}

Listing 364: The function k() in the file Smagorinsky.H

Listing 363 shows the implementation of how the sub-grid viscosity is computed by the Smagorinsky model
in OpenFOAM. Listing 364 shows how the model calculates the sub-grid kinetic energy.

nuSgs = ckAVk (263)

k
k=2 A2|dev S|? (264)
ce

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

© 0 N e A W N e

e e e
© W N O U A W N = O

with

S = sym grad(u) (265)

k
nuSgs = ckAy/25 A2|dev S|2 (266)
ce
ck o
nuSgs = cky/2—A?|dev S| (267)
ce

UVsGgs — (CsA)2|S| (259)

k
2 = chy /25 2
= CS C ce (68)

Eq. (268) shows how the Smagorinsky constant can be calculated from the model constants. The Smagorin-
sky constant is often stated in publications using or investigating the Smagorinsky model, because it is the only
degree of freedom of the Smagorinsky model.

In OpenFOAM the Smagorinsky model has two model constants. ce is inherited from the class GenEddyVisc.
This constant is used in the definition of the sub-grid dissipation rate. The default value of ce is 1.048 and is
defined in the constructor of the class GenEddyVisc in the file GenEddyVisc.C.

Therefore, the model constant ck is the only degree of freedom of the Smagorinsky model of OpenFOAM.
The default value of ck is 0.094. This results in a default value fofr Cg of 0.1995 =~ 0.2. The value of C's varies
in literature depending on the publication from 0.07 to 0.33 [8, 35].

it follows

the comparison with Eq. 259 shows

//- Return sub-grid disipation rate
virtual tmp<volScalarField> epsilon() const
{
return tmp<volScalarField>
(
new volScalarField
(
I0object
(
"epsilon",
runTime_.timeName (),
mesh_,
I0object :: NO_READ,
IOobject::NO_WRITE
),
ce_*xk()*sqrt(k())/delta()
)

Listing 365: The function epsilon() in the file GenEddyVisc.H

45.2.5 The oneEqEddy LES model

The oneEqEddy model is one of the standard LES models of OpenFOAM. This model is an one equation eddy
viscosity model with a constant model coefficient. Eq. 269 shows how the sub-grid viscosity is calculated by
the oneEqEddy model. The constant ck has a default value of 0.094.

vsgs = ckAv/ksas (269)

The transport equation for kggg

As this model is an one equation model, it introduces an additional equation to the set of equations. This
additional equation is a transport equation for the sub-grid kinetic energy ksgs. ksas is the kinetic energy of

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

262

the unresolved protion of the velocity. Thus, kgsqg is called sub-grid kinetic energy.

Oksas
ot

+V - (kSGS U_) -V - (D}CVksgs) =G —€esas (270)
with
Dy =v+vsgs

G =vsgs |synr1(Vu)|2

Vksas

€sGs = ce— ¢ ksas

Eq. 270 is similar to the transport equation for k of the k-e model. Also the definition of the sub-grid viscos-
ity is similar to the definition of the turbulent viscosity of the k-¢ model. This is not very obvious. Therefore,
we shall explore this matter further.

vsas = ckAv/ksas (269)

ce ksas Vksas
=ck— Ak 271
vsas = ck o p Tocs Vksas (271)

ksasvksasvksas

vsas = ckce » kscsxm (272)
]{?2
vsas = ck ce~2G5 (273)
€5Gs
Eq. 273 is similar to Eq. 193 — the definition of the turbulent viscosity of the k-¢ model
k‘2
vp =C,— (193)

€

The product of ck and ce when using their default values gives ck - ce = 0.0985 which is approximately the
default value of C,, of the k-e¢ model, which is C}, = 0.09.

46 The use of phi

46.1 The question

The governing equations of the solvers of OpenFOAM are written in a special notation that makes it easy
to compare the source codes with equations from a fluid dynamics textbook. In Section 24.1 the governing
equations of the solver pimpleFoam are examined. There, the terms of Eq. 54 are compared with the source
code, see Listing 169. Here, we repeat the comparison of how the convective term is written in the sources and
how this term is expressed mathematically.

V(uu) < fvm::div(phi, U)
——

div(uu)

We now examine how phi is defined and how we can find phi in the math.

46.2 Implementation
46.2.1 The origin of fields

One way to learn more about phi is to look for its definition in the source code of OpenFOAM.

Listing 366 shows the first lines of the main function of the solver pimpleFoam. The main function of any
C or C++ program is entered, when this program is executed. So, the instructions of Listing 366 are the first
instructions that are executed, when the solver is called.

In line 6 of Listing 366 the file createFields.H is included. This file contains instructions that create the
data structures of all fields that are necessary for the solver (e.g. the pressure or the velocity field).

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 263

© W N e U A W N =

Do~ S S R S
oA W N = O

© 0 N o A W N e

e e e
S)

int main(int argc, char xargvl[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "initContinuityErrs.H"

/* the rest of the solver */

Listing 366: The first few line of the main function of pimpleFoam in pimpleFoam.C

The file createFields.H contains the content of Listing 367. There, the velocity field U is created. In line
15 the file createPhi.H is included. There, the field phi is created.

Info<< "Reading field U\n" << endl;
volVectorField U
(
I0object
(
IIU|| .
runTime.timeName (),
mesh,
I0object ::MUST_READ,
I0object:: AUTO_WRITE
),
mesh

);

#include "createPhi.H"

Listing 367: The creation of U and phi in the file createFields.H

46.2.2 How phi is defined

Listing 368 shows the content of the file createPhi.H. From this Listing we see the data type of phi, it is
surfaceScalarField. This tells us, that phi is a scalar, that is defined on the faces of the control volumes
(cells) of the mesh.

Line 13 tells us how phi is defined. There, we find out, that phi is the inner product of the velocity — we
forget for the moment about the function linearInterpolate — and the face surface area vector. In Listing
369 we see the declaration of the function Sf (). In Listing 370 we see, that the variable mesh of Listing 368 is
of the type fvMesh.

Info<< "Reading/calculating face flux field phi\n" << endl;

surfaceScalarField phi

(

I0object

(
"phi" s
runTime.timeName (),
mesh,
I0object ::READ_IF_PRESENT,
I0object:: AUTO_WRITE

) 3

linearInterpolate(U) & mesh.Sf ()
)

Listing 368: The creation of phi in the file createPhi.H

//- Return cell face area vectors
const surfaceVectorField& Sf() const;

Listing 369: The declaration of the method Sf () of the class fvMesh in the file fvMesh.H

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 264

© 0w N ;oA W N

e e e
SR U Y

Foam::Info
<< "Create mesh for time = "
<< runTime.timeName () << Foam::nl << Foam::endl;

Foam::fvMesh mesh
(
Foam::IOobject
(
Foam::fvMesh::defaultRegion,
runTime.timeName (),
runTime,
Foam::I0Oobject::MUST_READ

Listing 370: The creation of the mesh in the file createMesh.H

46.3 The math

Now, let us examine the origin of phi from the mathematical point of view. We start with the governing
equations of a solver for incompressible fluids. Therefore, Eq. 54 is repeated below.

% +V(au) +V - dev(—v7 (Vu+ (Vu)')) = -Vp+ Q (54)

This equation is written in diferential form and is valid everywhere in the fluid. In order to use the finite
volume method, we need the governing equations in the integral form. Integrating Eq. (54) over a control
volume yields:

/ — +V(uu) +V - dev(—v* (Vu+ (Vu)T))dV = / ~Vp+QdV (274)
1%
Now we will have a closer look on the second term of Eq. (274). That is the convective term we already saw
at the beginning of this section.

Using Gauss’ theorem, we replace the integration over the volume of our control volume with the integration
over the surface of the control volume.

/ V(uw)dV = ¢ (uu) - dS (275)
\% oV

Because our control volume is a polyhedron (in most cases a hexahedron or a tetrahedron), the surface
integral reduces to a sum of intergrals over the faces Sy of the polyhedron.

fév uu) - dS = Z/ - dSy (276)

1Sll =S¢ (277)

With S; being the surface normal vector of the face f. The norm of this vector is equal to the area of the
face f. We denote with the subscript f the mean face-value of a quantity.

zf:/sf(uu) dSy; = (uu)s - Sy (278)

f
(uu); = = (uu)dSy (279)
I JSy
(uu); =~ (usuy) (280)
> (uu); - Sy~ Y (ugup) - Sy (281)
f f

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 265

Eq. (281) contains the fundamental assumption or approximation of the finite volume method. It is assumed,
that the mean face-value of the product of the velocities is (approximately) equal to the product of the mean
face-values of the velocity, see Eq. (280). In general, the operations averaging and multiplication are not
commutative.

We are now nearly finished. The rhs of Eq. (281) contains all ingredients we need for phi. A surface area
vector, a velocity and an inner vector product. See Listing 368. However, this ingredients are not in the order
we need. Therefore, there is need for some more math to do.

A general rule of tensor calculus states:

a®b-c=a(b - c) (282)

In this document, we omit the symbol ® for the sake of brevity.

a®b - -c=(ab) - c (283)
Eq. (283) looks like the rhs of Eq. (281).
(upuy) - Sy =y (uy - Sy) (284)
—————
:(z)f
Uf(Uf . Sf)Zquf)f (285)

46.4 Summary

Now, after having dug deep into the sources and after having done some math, we can summarize all thoughts
so far. We want to understand this equivalency.

V(uu) < fvm::div(phi, U)
——

div(uu)

The math tells use the following identities.

/VV(uu) dv :?{ (uu) - dS (286)

ov

?gv(uu) -dS = Zf:(uu)f ey (287)
> (uu); - Sy~ Y (ugup) - Sy (288)
!

7
> (upuy) - Sp = us(uy - Sy) (289)
f f
> up(uy - Sy) = usdy (290)
7 f

We have shown, that the integral formulation of the convective term can be reformulated to incorporate ¢
and u instead of uu.

47 Derivation of the IATE diameter model

In this section we cover the derivation of OpenFOAMSs IATE diameter model from [23].

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 266

47.1 Number density transport equation

We start with the transport equation for the bubble number density distribution f = f(V,x,t), e.g. from [23].
For sake of readability in most cases we refer to f(V,x,t) simply as f.

The first term of Eqn. (291) is the local rate of change of the bubble number density distribution. The
second term represents convective transport. The third term represents the rate of change due to change of
bubble volume. On the right hand side of the equation are source terms due to bubble interactions S; and
phase change Spp,.

%:+V-(f)—|—£/<> ZS + Spn (291)

The equation for the bubble number density distribution is much too detailled for most flow studies [29].
Thus, we derive a transport equation for the area concentration a;. The area concentration is a moment of the
bubble number density distribution. Besides the area concentration we can define further quantities based on
the moments of the number density distribution.

Eqn. (292) lists the general definition of the i-th moment m; of the probability density function f(z).

b
m; = / f(z)z'dz (292)
We now define some moments of the bubble number density distribution.
Vmaz
Total number of bubbles per unit volume n(z,t) = / F(V,x,t)dV (293)
Vimin
Vmaz
Volume fraction of bubbles alz,t) = / f(V,x,t)VdV (294)
Vs
Area concentration of bubbles a;(x,t) = / F(V,x,t)A;(V)dV (295)
Vimin

47.2 Interfacial area transport equation
47.2.1 Deriving the governing equations

We will use Eqn. (295) to derive a transport equation for the area concentration from Eqn. (291). First we
multiply Eqn. (291) by the average interfacial area A;(V') of bubbles with the volume V.

of . dV

Then, we integrate Eqn. (296) over all bubble sizes

Vimaz af a dV Vimaz
/ [A o AV - (fu) + A (fdtﬂdv / A [D85+ Spn | AV (297)

min i J

Now we will take a closer look on the single terms of Eqn. (297). For the first term, we simply apply Leibnitz
rule. Here it is important to note, that A; is constant in space and time. With Eqn. (295), we gain the local
derivative of the interfacial area concentration a;.

v, Vinen
max af a max
A;—d A, fd 2
/Vm =g [A (298)
max af 8
/ A Lav = Do, (299)

min

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 267

The convective term of Eqn. (297) can be treated in a similar fashion. If the velocity is independent of the
bubble size, we can put the u in front of the integral over all bubble sizes. Thus, we gain the convective term
for the interfacial area concentration.

Vinaz Vinaz
/ AV - (fu)dV = Vo (Aifu)dV (300)
Vinin Vimin
Vimaz Vmaz
/ AV - (fu)dV =V - <u / A fdv> (301)
Vinin Vimin
Vinaz
/ AV - (fu)dV =V - (ua) (302)
Vinin

If the velocity is not independent of the bubble size we can follow a similar strategy to derive a convective
term which is formulated in terms of the interfacial area concentration.

Vm,aw Vmaz a
/ AV - (fu)dV = v (ZAi fu) av (303)
thin Vm1n a'i
Vinae Vmar A fudV
/ AV - (fu)dV =V - <afvmaf> (304)
Vimin i
V;naw
/ AV - (fu)dV =V - (apu) (305)
Vinin

With the average local bubble velocity weighted by the bubble number u; [13]

Vina:
max AZ udV
u; = —f‘@m f (306)
Joi Aufav

The third term of Eqn. (297) needs more special treatment. In Section 47.5.1 we show the proof for (307).
This term relates to the gas expansion.

V .
mae 8 dV 2
Aj— | = —_2%,,
/Vm oV (f dt) dv 32" (307)

The RHS of Eqn. 297 contains the terms due to bubble-bubble interaction and due to phase change.

/Vm A L4y (o a2 (f dV—/VmMA SO+ Spn | AV (207)
v [P T v U “ ., T\ & T

There are two approaches to model the source terms due to bubble interaction [31]. One can solve the
integral equation for these source terms (308) or solve algebraic equations using mean parameters (309).

The latter approach assumes monosized bubble, i.e. a bubble breaks up into two equalsized daughter bubbles
[31]. In this approach each bubble interaction results in a change of interfacial area AA; = %AZ—.

Vimax
/ A SdV = @; (308)
J

Vimin
O, = 5; A4, (300)

with the interfacial area A;

Ay = = (310)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 268

[T VR R

S

1

and bubble number density n, ¥ = for spherical bubbles

36T
3
n= \IIZ; (311)
11 (o)’
33 (2) s (312)

The phase change term can be modelled directly, but within the framework of this manual we will not
consider phase change. Thus we gained a transport equation for the interfacial area concentration a;.

8a¢+v. (u ,)fzé +le a 25, (313)
ot @i 73aaz 3V \ q; J

J

47.3 Interfacial curvature transport equation
47.3.1 Basic definitions
The IATE diameter model solves a transport equation for the interfacial curvature kappai_.

Solves for the interfacial curvature per unit volume of the phase rather than interfacial area
per unit volume to avoid stability issues relating to the consistency requirements between the phase
fraction and interfacial area per unit volume.

Class description in IATE.H

By looking into the sources, we find the following relations

a; = oK (314)
6
dem = — 315
= (315)
Thus, the Sauter mean diameter ds,, equals
6

Which corresponds with the definition given in literature [21, 22].

_ 6o

dam (317)

a;

Listing 371 and 372 show the relevant source code of the IATE diameter model. This source code is the basis
for Eqns. (314) and (315).

//- Return the interfacial area
tmp<volScalarField> a() const
{

return phase_xkappai_;

}

Listing 371: Definition of the method a() of the IATE diameter model classin the file TATE.H.

Foam::tmp<Foam::volScalarField> Foam::diameterModels::IATE::dsm() const
{

return max (6/max(kappai_, 6/dMax_), dMin_);
}

Listing 372: Definition of the method dsm() of the IATE diameter model class in the file TATE.C.

The definition of kappai_ as the interfacial curvature seems a bit counter-intuitive, as the curvature of a
sphere is the inverse of its radius.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

269

© o N e s W N R

47.3.2 Derivation of the governing equations

We will now derive the governing equations for the interfacial curvature from the equations for the interfacial
area concentration a; which we derived from the transport equations for the bubble size distribution.

Here we will make no further assumptions, as we are simply rearranging the equations. We start from the
transport equation for the interfacial area concentration a; and OpenFOAMSs definition of a;.

8ai+v' (u ,)_gé +le a 25, (313)
ot %) = 3aaz . 3V \ g J
a; = ar (314)
Inserting (314) into (313) yields
oak 2 11 /a2
W—FV (ualﬁ)—gaaﬁﬁ-;ga (Ozli) Sj (318)
Next, we apply partial derivation of all terms containing x
2 11 /1)
a%+n%—?+mv - (ua)+au - Vﬁ:§dn+zj:§a (K> S (319)
da or 2 11 /1)\?
o . el . — 2 - (z , 2
n{8t+v (ua)]+o¢[at+u VK] 3&/@4—;3@(&) S (320)
Or 1. 11 /1)
[0 |:at+u . VK/:| :75(1:%‘1*;5@ <I<L> Sj (321)
Ik 1.k 111 (1)
g . — a2 o2z , 29
atJru V& 3aa+zj:3lﬂa<m> S; (322)
With + = &
or la 1 (a\’<—5;
- _ . _ _-= = '} 9
ot +V (k) ﬂ/—l} 3al€+3\11 (ai> ~ (823)
I " IIT !

The form of Eqn. (323) is chosen to match the equations given in [23]. The second term of the RHS has
exactly the same form as the equivalent terms in [23].

47.3.3 Implemented equations

Thus, we have derived a transport equation for k. However, we still need to check the equations that are
implemented in OpenFOAM. Therefore, we take a look at the source code.

In Listing 373 we see the main code for the transport equation. In Line 4 we see the terms marked with I
of Eqn. (323). In Line 5 term I of Eqn. (323) is implemented.

// Construct the interfacial curvature equation
fvScalarMatrix kappaiEqn

fvm::ddt (kappai_) + fvm::div(phase_.phi(), kappai_)
fvm::Sp(fvc::div(phase_.phi()), kappai_)

- fvm::SuSp(R, kappai_)
//+ Rph() // Omit the nucleation/condensation term

Listing 373: Construction of the transport equation in the file TATE.C.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 270

The right hand side of the equation in Listing 373 combines all term of the RHS of Eqn. (323) into the term
fvm: :SuSp(R, kappai_). The method fvm::SuSp() implements a source term for a matrix equation. The
arguments translate to R * kappai_.

The first term on the RHS of Eqn. (323) is due to the change of bubble volume (dilatation effect). The code
in Listing 374 translates to Eqn. (324).

© o N e oA W N R

e
w v o= O

// Initialise the accumulated source term to the dilatation effect
volScalarField R
(
(
(1.0/3.0)
/max
(
fvc::average (phase_ + phase_.o0ldTime()),
residualAlpha_
)
)
*(fvc::ddt (phase_) + fvc::div(phase_.alphaPhi()))
);

[SAT SE C R VR

Listing 374: The first term of the RHS of Eqn. (323) of the transport equation in the file IATE.C.

:1%—‘2‘+V - (au)
3 o

The method call fvm: :SuSp(R, kappai_) multiplies R with kappai_. Thus we recognize the first term of
the RHS of Eq. (323).

R (324)

L
Eqn. (323) 1] = —ggn (325)
OpenFOAM II] = —Rk (326)
1a
R=-2 327
3% (327)
1a
r=--2 328
355 (328)

The other source terms related to the models for bubble-bubble interaction are added to R. Listing 375 shows
the loop over all sources, note the minus sign.

// Accumulate the run-time selectable sources
forAll (sources_, j)
{
R -= sources_[j].RQO);
}

Listing 375: The second term of the RMS of Eqn. (323) of the transport equation in the file IATE.C.

For the interaction models the minus of Listing 375 cancels the minus of Listing 373.

47.4 Interaction models

OpenFOAM provides a base class for all models related to bubble-bubble interaction. There are several inter-
action mechanisms implemented.

1. Breakage due to impact of turbulent eddies (TT - turbulent impact)
2. Coalescence through random collision driven by turbulent eddies (RC - random collision)

3. Coalescence due to acceleration of the following bubble in the wake of preceding bubble (WE - wake
entrainment)

The base class is named IATEsource and it defines a pure virtual function named R(). This means that every
derived class has to provide its implementation of R(). Besides R(), the base class provides a number of helper
methods that are used in the derived classes, e.g. bubble Reynolds number Re () or the Weber number We ().

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

271

[SA B SR R

47.4.1 Turbulent impact - TT

In [22, 23] the source term due to turbulent impact is stated as:

3
a;
n=Vv— (329)
up = V2k (330)
Rrr =Cry (g:) exp <V‘[;f:“) 1- WI;/e;r where We., > We (331)

The Weber number We can be seen as the ratio of inertia forces and surface tension forces and is defined
as:

2d
We = pu

(332)

o
with

0 density

U characteristic velocity

d characteristic length scale

o surface tension

The Weber number is provided by the class IATEsource as the base class for all interaction models. See
Section 47.4.4 for implementation details.

The critical Weber number We,, and the model constant C';; must be provided by the user in the appropriate
dictionary.

47.4.2 Random collision - RC

In [22, 23] the source term due to random collision is stated as:

w = V2k (333)

24, D2 %ZI 1/3
7 o fjt b 1 —exp —C(l);ia (334)
Oéma;m: (ama;lx - 041/3) Olmi’z:v —a'/

The model constants Crc, C and a4, need to be provided by the user.

Rrc = Cgre

47.4.3 Wake entrainment - WE

In [22, 23] the source term due to wake entrainment is stated as:

Rwg = CwrC)'n*Diu, (335)

The model constant Cyy g needs to be provided by the user.

47.4.4 TImplementation details of the IATEsource class
Weber number

The Weber number is implemented in the class IATEsource, see Listing 376. This definition makes use the
method Ur (), which is also provided by IATEsource.

Foam::tmp<Foam::volScalarField> Foam::diameterModels::IATEsource::We ()

const
{
return otherPhase () .rho () *sqr (Ur ())*phase().d()/fluid().sigma();
}
Listing 376: The definition of the Weber number We in IATEsource.C
X This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM® 979

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

© 0 N e oA W N R

e e e
S <)

-
o

© o N e U oA W N R

[I I I I R N O ~ S S
S 0 N e G A W N RO O XN R W N = O

Relative velocity

The relative velocity between the bubbles and the surrounding fluid is given by [20, 28]. Compare Eqn. (336)
and Listing 377.

Apl
uy = /2 [092 p] 1-a)™ (336)
PL

Foam::tmp<Foam::volScalarField> Foam::diameterModels::IATEsource::Ur() const
{
const uniformDimensionedVectorField& g =
phase () .U() .db() .lookupObject <uniformDimensionedVectorField>("g");

return
sqrt (2.0)
*pow025
(
fluid () .sigma () *mag(g)
*(otherPhase () .rho() - phase().rho())
/sqr (otherPhase () .rho ())
)
*pow (max (1 - phase(), scalar(0)), 1.75);
}

Listing 377: The definition of the relative velocity between bubbles and surrounding liquid in IATEsource.C

The IATE implicitely applies only to bubbly systems, i.e. gas-liquid systems. If the IATE model is applied to
the denser phase, then Line 11 of Listing 377 leads to a floating-point exception (FPE). If phase refers to the
liquid phase, then Line 11 evaluates to a negative number. Raising a negative number to a non-integer power
is not possible within the domain of the real numbers. Thus, OpenFOAM will issue an error message due to an
floating-point exception.

Comparing the formulations

Here we take a closer look on the implementation of the source terms. Listing 378 shows the method R() of the
IATEsource class.

Foam::tmp<Foam::volScalarField>
Foam::diameterModels:: IATEsources::turbulentBreakUp::R() const
{
tmp<volScalarField> tR
(
new volScalarField
(
I0object
(
|IR|| .
iate_.phase () .U().time () .timeName (),
iate_.phase () .mesh()
),
iate_.phase () .U() .mesh(),
dimensionedScalar ("R", dimless/dimTime, O0)

);

volScalarField R = tR();

scalar Cti = Cti_.value();

scalar WeCr = WeCr_.value();
volScalarField Ut (this->Ut());
volScalarField We(this->We());

const volScalarField& d(iate_.d() ());

forAll1(R, celli)

{
if (Wel[celli]l > WeCr)
{

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 273

30
31
32
33
34
35
36
37
38
39
40

Rlcelli] =
(1.0/3.0)
*Cti/d[celli]
*Ut [cellil
*sqrt (1 - WeCr/Wel[cellil)
*exp(-WeCr/Wel[cellil);

}

return tR;

Listing 378: The definition of the method R() in turbulentBreakUp.C

Listing 378 translates to the following mathematical expression:

1 CT[Wec'r (Wecr
RT[= ex —

§@ut = We We > where We > We,, (337)

Comparing Eqns. (331) and (337) reveals some differences in formulation. This is due to the fact, that Eq.
(331) is a source term for the transport equation for the interfacial area concentration a; and Eq. (337) is a
source term for the transport equation for the interfacial curvature k.

In the derivation of the curvature equation from the area concentration equation we divided by the volume
fraction. Otherwise, only rearrangement and variable substitution was performed.

For this term we now have a look on the RHS of the equations for a; and x and compare the implementation
of OpenFOAM with the equations stated in literature.

We begin with repeating the equations for a; and . The interaction source term S; can be found in this
form in [23].

%% v (uay) = 28 Y il (e s, (313)
ot T L AN
Ok la 1 (o)’ S;
E‘FV(KZU)—KV 11——3a/€+3\11<ai> zj:; (323)
A%

ok 1a
E‘FV(KJU) —kV -u= 7§alﬁl+ Ej le‘-? (338)
——
v

We now compare the terms marked with IV of Eqns. (323) and (338). As these terms must be equal, we
can form the following equation.

L (j)z > 5 _ > (339)

We now demand, that the summands need to be equal, and we focus on the term for turbulent break-up (TT)

2
1 « 1 nug Wee, WeCT 1 CTI Wecr Wecr
— (=) =C — 340
3\I/(ai> a TI(Db>eX () We 3dyn £ (340)
Next, we cancel all common symbols and expressions, note the different symbols for the bubble diameter
(Db = dsm)
2
1l [« 1
(=) Zp = 341
v (ai) ol " (341)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 274

We now insert the definition of n, see Eq. (329)

2 3
1l [« 1_a:
7] () alar =K (342)
1
a;
Siok (343)
(0%

We now end up with an equation that is fulfilled, when we look at the definition of x, see Eqn. (314)
a; = aK (314)

Thus, we have demonstrated on the example of the source term for turbulent break-up of bubbles, that the
implementation of OpenFOAM follows exactly the model published in [23].

47.5 Appendix
47.5.1 The proof for Eqn. (307)

We use the following symbols.

z=V (344)
flx) = f(V,x,1) (345)
g9(x) = Ay(V) (346)
a = Vinin (347)
b= Viaa (348)
Thus, the LHS of Eqn. (307) becomes
Vmaz 9 dV b 0 dz
/"/m’in AZW <fdt> dV —/a g(.’l}')% <f(x)dt> dx (349)
Now, we apply partial integration
[o2 (s 4o = 10 %g@] - [2 (51012 (350)
agxﬁx)T xdtgxa . Ox T
As f(x) is a probability density distribution it has the following properties
fla)=f(b)=0 (351)
Thus, the first term of the RHS of Eqn. (350) vanishes
b 0 dx b dg(x) dz
[atorgs (15 o= [(505) ao (352)

We now take a closer look on the relation between the average interfacial area of a bubble A; and the volume
of a bubble V.

Ay = dn (353)
d3
V= Tﬂ (354)
sa={/%Y (355)
e
2/3
A= (GV> . (356)
i

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 275

Returning to our simplified notation for this proof

dgla) _ 2 (6\7
or 3 (ﬂ') () "
dg(x) 2 (6 2/3 x2/37r
or 3\« x
O9(x) _ 21 (6x)"
or 3z \ 7 i
9(x) _ 29(x)
Ox 3 x

We now insert Eqn. (352) into Eqn. (352).

/abg@c);x (r0%) dx_/ggg)

/abgu)aax <f<m>j§> o= /ab @)

T

(r6@)

dx
dt

(357)

(358)

(359)

(360)

(361)

(362)

(363)

Next, we take a closer look on the term #. Since x is the volume of the bubbles V', we can relate V' to
the void fraction or gas phase volume fraction a. For any control volume Vi we can state, that the volume
of the bubbles V' is equal to the volume fraction times the control volume. Here we neglect mass transfer by

evaporation, see [22] for a derivation considering evaporation.

V= aVCV
V =daVey

V. aVev a
V_oncv_a
i d
T«

We further assume that the rate of change of volume is independent of the volume itself [22, 28].

.
7 A IW)

By using relation (363) and (367) on Eqn. (363), we gain

/abgu)ai (fmif) d=50 / flgte)de

J

Vinin

or by using the other notation, Eqns. (344)-(344)

/ o) (r0%) ar=-35

/ o0 (r)) o=

And by using (295) on (370) we have proofed (307).

2a

Vimaw

FAAV

a;

3«

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

(364)
(365)

(366)

(367)

(368)

(369)

(370)

(371)

276

48 Derivation of the governing equations for the MRF approach

48.1 Preliminary observations

In order to use the MRF approach the mesh has to be divided into different regions. As the MRF approach in

OpenFOAM covers only rotating reference frames'* only rotation can be imposed on a region. A region for

which a non-zero rotation is specified has to be axi-symmetric with respect to the rotational axis.
Furthermore, does OpenFOAM only supports steady rotation, i.e. the angular velocity w is constant.

48.2 Mass conservation equation

The mass conservation equation for incompressible flows

V-ou=0 (372)

is valid in all inertial frames of reference. An inertial frame of reference is either fixed in space and time or
moving with a constant translational velocity.

Due to the constraints listed in the previous section we consider only rotating reference frames in the MRF
method. To translate a vector from its representation in the inertial frame of reference to the rotating frame of
reference a rotation matrix Q is used. A rotation matrix has the property that the inverse is also the transposed.

rU= Qu (373)
u=Q zu (374)
Q'=Q" (375)

The index R before the symbol u denotes that the vector gu is given in the rotating frame of reference. If
there is no index before the symbol the vector is given in the inertial coordinate system. The index R is put
before the symbol to prevent the vector ru to be mistaken as a relative velocity.

Beginning with the mass conservation equation in the inertial coordinate system we derive the mass conser-
vation in the rotating coordinate system.

V-u=0 (376)
V- (Q'Qu) =0 (377)
i
V- (QTRu) =0 (378)

We use the relation V- (A-a) = (V-A)-a+ A : (Va) and the note that the rotation matrix is constant in
space.

V- (Q"ru) = (V-Q") - ru+ Q" : (Vgu) (379)
—
V- (Q"gru) = Q" : (Vgu) (380)
Q" : (Vgu) =0 (381)
Next we multiply the equation from the left with the rotation matrix.
QQ”T : (Vigu) =0 (382)
I:(Vgu)=0 (383)

We remember that the contraction of the unit tensor and a velocity gradient is equal to the divergence of the
velocity.

I: (VRu) =V- RU (384)
V- gu=0 (385)

Thus, we showed that the mass convervation equation with the velocity expressed in the rotating coordinate
system has the same formulation as the mass conservation equation in inertial coordinates.

134F ¢ in Fluent it is possible to prescribe frame motion with unsteady translational and rotational speeds [?]. This leads
essentially to more additional terms in the governing equations. OpenFOAM, however, limits the frame motion to steady rotation.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

277

48.3 Momentum conservation equation

When we use a rotating coordinate system, we can decompose the flow velocity in two components. The first is
due to the rotation of the frame of reference and the second is the relative motion between the particle or fluid
parcel under consideration and the rotating reference frame.

U=wX7r+ug (386)
Eq. (386) can also be written in this form using the spin tensor

u=Qr+ug (387)

The spin tensor is a skew-symmetric tensor that contains the components of w, the angular velocity vector.

0 —w, Wy
Q= Wy 0 —Wy (388)
—Wwy Wy 0

We now derive the momentum equation for the velocity for the rotating zone starting from the momentum
conservation equation for incompressible Newtonian fluids.

?Tltl + (Vu) -u= f% + V- (vVu) (389)

The terms on the LHS are the total time derivate of u. Thus, we can write

du Vp
E = —7 +V (Z/Vu) (390)
With Eq. (386) we yield
d \Y%
a(Qr+uR)=—7p+v- (vVu) (391)

We consider only steady rotation; thus, the temporal derivative of the spin vanishes

dugp dQ dr Vp _
Wﬁ-ar—kﬂa——p + V- (vVu) (392)
=0
dclll—f +Qu= —% +V- (vVu) (393)

We now evaluate the total time derivative of ug

dur Oup dx Vp
= 4 Qu=--% . 4
5 + <t +Qu p + V- (vVu) (394)

:VuR =u
0
%—&—(VuR) -u—i—ﬂu:—%—i—v- (vVu) (395)
Now we insert ugp from Eq. (386) into the local derivative

%(u—ﬂr)—l—(VuR) ’u—}—ﬂu:—%—kV' (vVu) (396)

As the velocity component due to the steady rotation of the reference frame is constant, the term % (Qr) will
vanish
Ou

aJr(VuR) ~u+ﬂu:f%+v- (vVu) (397)

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 278

S

© o N o «u

10
11
12
13
14

The second term on the LHS can be rewritten using the following identity

V(ab) =(V-b)a+(Va) - b (398)
0 \Y
£+v. (upu) + Qu=—L 1 V- (Vu) (399)
p
Thus, we derived the governing equation for the absolute velocity using flux relative to the local frame of
reference.
The contribution from the rotation of the domain is limited to two terms in the governing equation. The
LHS of Eq. (400) contains the relative velocity in the second term. The RHS of Eq. (400) contains the Coriolis
force in the last term.

0 \Y%

£+V' (uRu)=—7p+V~ (vVu) — Qu (400)
Eq. (400) corresponds to the momentum equation in absolute velocity formulation that can be found in the

Fluent Theory Manual [6]. Another resource for the MRF approach in OpenFOAM is [36].

48.4 Notes on the implementation of the MRF Approach

Adding Coriolis forces in the cells of the moving zone is not the only operation necessary for the MRF approach.
The boundary conditions of the rotor have to be adjusted. As the rotor is moving the fluid velocity at the rotor
walls is not zero. The velocity at the walls has to equal the solid body rotational velocity of the rotor.

48.4.1 OpenFOAM-2.*

In OpenFOAM-2.2.x the MRF method is part of the fuOptions mechanism'3®. This is a general mechanism
that allows for run-time selectable physics. The fuOptions framework is a generalization for the source terms in
the momentum equation. Via this framework the MRF approach can be selected along with momentum (e.g.
wind turbine rotors), porosity (i.e. for modelling porous zones) and energy sources (e.g. for regions with heat
transfer).

To provide this flexibility the fvOptions framework is implemented using an abstract class to define the
behaviour of the general source. Derived class implement the actual physics, e.g. the MRF method. Thus the
class MRFSource is derived from option.

The constructor of the class MRFSource calls the method initialise(). This method is defined in the
class MRFSource and calls the method correctBoundaryVelocity of the class MRFZone. In the method
correctBoundaryVelocity the velocity values of boundaries within an MRF-zone are set to the solid body
rotational velocity. Otherwise the no-slip boundary condition would enforce a zero absolute velocity which
would be clearly wrong.

In Listing 379 we see the prescription of the solid body velocity for all faces that lie within the MRF-zone.
On these faces the solid body velocity is prescribed.

Upot = W X (’rface - Torigin) (401)

void Foam::MRFZone::correctBoundaryVelocity(volVectorField& U) const
{
const vector Omega = this->0mega();
// Included patches
forAll (includedFaces_, patchi)
{
const vectorField& patchC = mesh_.Cf().boundaryField () [patchil;
vectorField pfld(U.boundaryField () [patchil);
forAll(includedFaces_[patchil], i)

{
label patchFacei = includedFaces_[patchi][i];
pfld[patchFaceil] = (Omega ~ (patchCl[patchFaceil]l - origin_));
}
U.boundaryField () [patchi] == pfld;

1353ee http://wuw.openfoam.org/version2.2.0/fv0ptions.php

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

279

http://www.openfoam.org/version2.2.0/fvOptions.php

15
16

Listing 379: The method correctBoundaryVelocity in the file MRFZone.C

Capabilities and limitations of the MRF approach

The MRF method in OpenFOAM deals only with rotations other than FLUENT, which is also capable of
accounting for translational movement [6]. In both CEFD softwares the velocity of the moving reference frame
needs to be constant. This means OpenFOAM is capable of dealing with rotating reference frames that move
with a constant angular velocity.

The boundary of the zone, in which the rotation of the frame of reference is active, must be oriented in a
way, so that the velocity component of the reference frame’s velocity normal to the bounary is zero. This means
for a rotating frame of reference the zone in which this movement is acting needs to be a cylinder'?® with its
axis parallel to the axis of rotation of the reference frame.

The FLUENT theory manual says that the MRF method is strictly speaking only valid for steady state
cases [6]. However, FLUENT offers this method for unsteady simulations too [6].

The sliding mesh technique gives more accurate results than the MRF method especially when it comes to
transient simulations. However, the main advantage of the MRF method is its low impact on computational
cost, compared to moving mesh techniques.

48.4.2 OpenFOAM-3.*

With OpenFOAM-3.0.0'37 the MRF method was taken out from the fuOptions framework. The developers of
OpenFOAM give the following reason for this mode:

fvOptions does not have the appropriate structure to support MRF as it is based on option
selection by user-specified fields whereas MRF MUST be applied to all velocity fields in the particular
solver. A consequence of the particular design choices in fvOptions made it difficult to support MRF
for multiphase and it is easier to support frame-related and field related options separately.

Currently the MRF functionality provided supports only rotations but the structure will be
generalized to support other frame motions including linear acceleration, SRF rotation and 6DoF
which will be run-time selectable.

1361n fact the zone can be any volume defined by any surface of revolution of the rotational axis of the reference frame. However,
the cylinder is the easiest and most convenient choice.
37http://www.openfoam.org/version3.0.0/

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

280

http://www.openfoam.org/version3.0.0/

Part XI
Appendix

49 Useful Linux commands

49.1 Getting help
49.1.1 Display -help

Virtually all Linux commands display a summary of the programs purpose and usage. To display this message
the command has to be invoked with one of those parameters: -h, -help, --help. If the wrong parameter is
used the help message is displayed anyway or an error message naming the correct parameter to display the
usage information, see Listing 380.

user@host:~$ 1ls -help

ls: invalid option -- e

Try ‘ls --help’ for more information.
user@host :~$

Listing 380: Displaying the help message

Apparently all of the tools and solvers of OpenFOAM!3® display such help messages. New Linux and
OpenFOAM users are strongly encouraged to study the help messages to deepen their understanding and
insight.

49.1.2 man pages

Many Linux commands have an additional, more detailed documentation'3”. This is written in the man pages
(man is short for manual). To display the man pages of a certain command, simply put the name of the command
or program behind the command man. Listing 381 shows how to display the man pages of the Linux command cp.

man cp

Listing 381: Displaying the man pages
The man pages cover general commands of Linux, system call, library function of the C standard library

and much more. On some systems the man pages are only partially or not at all installed by default.

49.2 Finding files
49.2.1 Searching files system wide

Searching for a file on the whole file system can be done by locate. Listing 382 shows the result of the search
for the source file of icoFoam.

user@host :~/0penFOAM/user-2.1.x/run/icoTurb$ locate icoFoam.C
/home/user/0OpenF0AM/0OpenF0AM-2.0.x/applications/solvers/incompressible/icoFoam/icoFoam.C
/home/user/0OpenFOAM/OpenFO0AM-2.1.x/applications/solvers/incompressible/icoFoam/icoFoam.C

Listing 382: Looking for icoFoam.C

49.2.2 1In a certain directory

To find a file in a certain directory and its sub-directories find can be used. Listing 383 shows the command to
search the file LESProperties in the OpenFOAM tutorials.

138No exception is known to the author.
139 As an example: the man pages of gcc are longer than 10000 lines.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X1 Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

find $FOAM_TUTORIALS -name LESProperties

Listing 383: Search LESProperties in the tutorials

49.3 Find files and scan them

How do I define probes? I have seen this already, but where?

To answer this question one has to find all files in which probes can be defined — the controlDict in this
case. Additionally, all of the files returned by the search have to be scanned for the definition of probes. As an
OpenFOAM case consists of a number of text files, it is easy to scan these files for certain keywords. So, the
answer to the question above is: find all controlDicts and scan them for the word probe.

Instead of perfoming this task manually, a single one-liner in the Terminal does the magic. Listing 384 shows
how all files named controlDict in the tutorials are located and scanned for the word probes.

find $FOAM_TUTORIALS -name controlDict | xargs grep ’probes’ -sl

Listing 384: Find and scan files

find looks for respectively finds all files with the name passed with the option -name in the specified folder
and its folders. zargs executes the passed command line. The output of find is passed to grep as input by a
pipe. grep then scans all files for the word probes.

49.4 Scan a log file

grep can scan a text file for a certain pattern. In this example we want to scan the solver output for a certain
pattern. The solver twoPhaseEulerFoam displays after every time step the minimum and maximum value of
the volume fraction «. For « to be physically meaningful, its value has to be of the range 0 < o < 1.

In this example a simulation crashed and the main suspicion is, that there were values of o greater than
one. Listing 385 shows two lines of solver output. The first line has a maximum value of one. In some cases,
when regions evolve where the continuous phase vanishes, e.g. above a water surface, this value is perfectly
reasonable. The second line comprises a maximum value of a greater than unity. This value is unphysical,
because a phase can not occupy a certain amount of space — a cell — to more than 100%.

Due to the fact that simulations often do not crash immediately the log file containing the solver output is
hundreds of thousands of lines long. To look for maximum values of a greater than unity manually is not an
option. We need an one-liner that does that automatically for us. That’s where grep comes in.

1
1.00003

7.52826e-42 Max(alpha)
2.30261e-52 Max(alpha)

Dispersed phase volume fraction = 0.194351 Min(alpha)
Dispersed phase volume fraction = 0.060562 Min(alpha)

Listing 385: Example: solver output regarding volume fraction

Listing 386 shows how the user can scan the log file for the appropiate pattern. grep expects as first argument
the pattern to look for. The second argument is optional, it specifies the file from which to read. If no file was
specified, grep would read from standard input. The option -c makes grep display only the number of number
of matches. Otherwise, grep would display all lines in which a match was found. In a situation in which the
number of hits could reach hundreds or thousands, displaying all lines with a match could be unwise.

The first command in Listing 386 would detect a match for both lines of Listings 385. So this pattern
’Max (alpha) = 1’ is not useful to find out whether a exceeded unity or not.

The second command in Listing 386 will only detect lines in which « is larger than unity. So, of the two
lines of Listings 385, only the second one would result in a match.

1’ foamRun.log -c
1.’ foamRun.log -c

grep ’Max(alpha)
grep ’Max(alpha)

Listing 386: Scan the log using grep

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X1 Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

282

49.5 Running in scripts
49.5.1 Starting a batch of jobs

To use the computing power of a computing cluster it is a good idea to let the cluster do the work in batches.
To be able to do this, this section explains how to use a script to run a number of simulations sequentially. So,
the cluster can calculate a great number of cases without the need for the user to start each job seperately. This
would be unacceptable when simulating overnights.

The script in Listing 387 starts two parallel simulations inkluding domain decomposition and reconstruction.
The script assumes to start from a directory which contains all two cases. The first group of commands changes
into a subdirectory of the current directory (cd ’./fullColumn_fineV01’). The next commands perform all
tasks of a parallel simulation. Then the script changes to the second case (cd ’../fullColumn_fineV02’).

This is a very basic script. It contains no checks if a simulation has terminated prematurely or any other
useful features.

#!/bin/bash
fine 01

echo ’fine0O1’
cd ’>./fullColumn_fineVO1’

echo ’decomposing’
decomposePar > foamDecompose.log

mpirun -np 2 twoPhaseEulerFoam -parallel > foamRun.log

echo ’reconstructing’
reconstructPar > foamReconstruct.log

fine 02
echo ’fine02’
cd ’../fullColumn_fineV02’

echo ’decomposing’
decomposePar > foamDecompose.log

mpirun -np 2 twoPhaseEulerFoam -parallel > foamRun.log

echo ’reconstructing’
reconstructPar > foamReconstruct.log

Listing 387: Using a shell script to start several simulations.

49.5.2 Terminating a running script

There may be need to stop a script from any further execution without terminating the currently running
simulation. This example assumes that a script with name runCalculations is to be terminated. First the PID
of runCalculations has to be known. In Section 9.3.2 explains this bit in detail. Listing 387 shows how to look
for the PID. The command in Listing 387 outputs two lines. The first line comes from the running script and
the second line stems from the running parallel calculation. This is because all running processes matching the
pattern run were searched for. Therefore, also the running instance of mpirun was found.

user@host:~$ ps -el | grep run
0 S 8553 14913 14517 0 80

0 S 8553 14917 14913 0 80
user@host :~$

- 2687 wait pts/11 00:00:00 runCalculations

0
0 - 2687 wait pts/11 00:00:00 mpirun

Listing 388: Search for PIDs using ps and grep

Terminate the script

If the script was terminated using kill, then the simulation would continue unaffected. Listing 389 shows how
the script is terminated and mpirun continues to be running.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X1 Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

283

user@host:~$ ps -e | grep run

14913 pts/11 00:00:00 runCalculations
14917 pts/11 00:00:00 mpirun
user@host:~$ kill -KILL 14913
user@host:~$ ps -e | grep run

14917 pts/11 00:00:00 mpirun

Listing 389: Use kill to stop a shell script.

Terminate the script and the simulation

To terminate both the script and the simulation — in this example — the running simulation has to be terminated
also. Terminating only the running simulation only, will cause the script to execute the next command. So,
first the script and then the simulation need to be terminated.

49.6 diff

diff is a command line tool that analyses two files and prints a summary of the differences of those files.
Further information on diff can be found in the man-pages or the help-message.

49.6.1 Meld

Meld is a graphical front-end to diff. This allows for a side-by-side comparison of both files under investi-
gation. Parts of the file that differ are highlighted by colors. For more information about Meld see http:
//meldmerge.org/.

[twoPh lerFoam] lerFoam] ph delH - Meld =l M

Datei Bearbeiten Anderungen Ansicht Reiter Hilfe
& ispeichem @

[[twoPhaseEuler...] phaseModelH 3% | [[OpenFOAM-2.2...] phaseModelH % | [[OpenFOAM-2.2...] phaseModel.C %

[olvers/multiphase/t ulerFi h. del/ph del/ph delH| v | Durchsuchen... lvers/multiphase/multiphaseEulerF: h. del/ph del/ph del.H| v | Durchsuchen... &
#include “dictionary.H”

#ifndef phaseModel_H € #include "dictionaryEntry.H"

#define phaseModel_H #include "dimensionedScalar.H"
#include "volFields.H"

#include "dictionary.H" #include "surfaceFields.H"

#include "dimensionedScalar.H"
#include "volFields.H"
#include "surfaceFields.H"

J] F R R R R R R % % % R R R K R K K K K K K K K K Kk kK Kk kK ok ok ok ok K ok k ok *

namespace Foam

[% % % %k %k xR x kR K K KA E KA KA KK A E AR KK KA KA K K x {
namespace Foam € // Forward declarations
class diameterModel;
[o iiiiiiiiiiiiiiiiiiiieiiiieiiiiiiiiiiiiiiiies] oo B
Class phaseModel Declaration Class phaseModel Declaration
= e eeeeieeeeiieeieieiiaaaaas f A = = o = ... 3
class phaseModel 4’(_:1355 phaseModel
// Private data public volScalarField
dictionary dict_; > // Private data
//- Name of phase /- Name of phase
word name_; word name_;
//- Characteristic diameter of phase > € dictionary phaseDict_;
dimensionedScalar d_;
« //- Kinematic viscosity
//- kinematic viscosity - dimensionedScalar nu_;
dimensionedscalar nu_;
« //- Thermal conductivity
//- density -> dimensionedScalar kappa_;

dimensionedscalar rho_;
[l- Heat rapacitu

EINF : Zeile 36, Spalte 1

Figure 69: A screenshot of Meld

49.7 Case setup

There are a lot of tasks when setting up a case. Even though we might use a tutorial case as a starting point, a
lot of tedious work might lie ahead of us. Computers are better at certain tasks than we humans!|Citation needed]

Thus, we might be better off automating boring tasks. The pyFoam library is a good collection of useful
stuff. However, certains tasks are done by mere one-liners in Linux. This is what this section is about.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X1 Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

284

http://meldmerge.org/
http://meldmerge.org/
http://xkcd.com/285/

49.7.1 Renaming files

The current mult-phase solvers use a naming scheme in which the name of the phase determines the file’s exten-
sion. Thus, the thermophysical properties of the phase air are stored in the file thermophysicalProperties.air.
This causes in certain cases the need to rename a number of files, because we use argon as gaseous phase and
we want to comply with the naming scheme. The dirty hack would be to just exchange the properties of air
with those of argon without changing the naming of the phase.

In Linux there are many ways to perform this sort of task. For mere text substitution a solution based on
regular expressions is the way to go. Listing 390 shows how the command rename is used to rename all files
containing a certain text.

rename ’s/air/argon/g’ ./*

Listing 390: Change the extension of all files having the extension air to argon.

49.8 Miscellaneous

This section contains references to useful scripts or commands explained elsewhere in this document.

Terminate a backround process

See Section 9.3.2.

Delete the processor* directories

If one or several simulations have been conducted on a computing cluster, it makes sense so reconstruct the
domain on the cluster. Otherwise the workstation of the user would be blocked for the time needed to complete
reconstruction. After reconstructing the domain the processor* directories still contain all the time step data.
If the processor* folders are deleted on the cluster, the user can afterwards copy the whole case directory to the
workstation without transmitting the solution data twice.

See Section 9.5.2 for how to deal with processor® directories.

Redirect output

Redirecting the output of a program is explained in Section 9.1.1.

50 Archive data

Parametric studies generate a great deal of data. After the post-processing is done all files could be compressed
to save disk space. On Linux systems the tar archiving utility may be the agent of choice. The name tar comes
from tape archive, which is pretty descriptive in terms of the origins of this archiving program. A tar archive
is a single file which contains all archived files and folders. This step alone is only a reorganisation of the data,
fit for the usage of sequential data storage devices like magnetic tapes.

In a second step the tar archive needs to be compressed. For this task there are many possible choices. Linux
systems usually provide programs like gzip, bzip2 or xz. The distinction between archiving and compressing is
probably for historical as well as practical reasons. There is also one paradigm of the UNIX philosophy (Make
each program do one thing well) which supports the segregation in archiving and compression. The compression
programs usually differ in the utilised compression algorithms. There is one rule of thumb stating: The more
data is to be compressed, the longer compression takes.

Table 8 lists the achieved compression of a parametric studies with 21 cases totalling in 50 GB of data. The
data was written in ascii format. Compressing the data resulted in a 70+ % reduction of used disk space. If
space consuming cases are to archived, slow algorithms that result in good compression rates should be prefered.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X1 Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

285

used disk space reduction

21 cases uncompressed 50 GB
compressed: *.tar.bz2 13.7GB 36.3GB - T72.6 %

Table 8: Comparison of disk space reduction

Archive log files

In this example log files are archived. In this case the same algorithm achieves an even greater reduction of disk
space usage. This example shows that the achieved compression rate strongly depends on the input data.

used disk space reduction
16 log files uncompressed 2.0GB
compressed: *.tar.bz2 154.7MB 1.85GB -923 %

Table 9: Comparison of disk space reduction

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

X1 Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

286

References

1]
2]
8]
[4]

SRS N T

XI

Intel 64 and IA-32 Architectures Optimization Reference Manual.
The International System of Units, 2006. URL www.bipm.org/en/si/si_brochure.
The International System of Units (SI), 2008. URL http://physics.nist.gov/Pubs/SP330/sp330.pdf.

A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. Addison
Wesley, 2001.

J. D. Anderson. Computational Fluid Dynamics. McGraw-Hill International Editions, 1995.
Inc. ANSYS. FLUENT Theory Guide, 14.5 edition, 2012.
ANSYS, Inc. ANSYS CFX-Solver Theory Guide, 14.0 edition, November 2011.

N. G. Deen B. Niceno, M. T. Dhotre. One.equation sub-grid scale (sgs) modelling for euler-euler large eddy
simulation (eeles) of dispersed bubbly flow. Chemical Engineering Science, 63:3923-3931, 2008.

A. Behzadi, R. I. Issa, and H. Rusche. Modelling of dispersed bubble and droplet flow at high phase
fractions. Chemical Engineering Science, 59:759-770, 2004.

J. Boussinesq. Théorie de 'Ecoulement tourbillant. Mem. Présentés par Drivers Savants Acad. Sci. Inst.
Fr., 23:46-50, 1877.

Daniel Brennan. The Numerical Simulation of Two-Phase Flows in Settling Tanks. PhD thesis, Imperial
College of Science, Technology & Medicine, 2001.

C. P. Dahl. Numerical modelling of flow and settling in secondary settling tanks. PhD thesis, Aalborg
University, Denmark, 1993.

J.-M. Delhaye. Some issues related to the modeling of interfacial areas in gas-liquid flows I. the conceptual
issues. Comptes Rendus de I’Académie des Sciences - Series {IIB} - Mechanics, 329(5):397-410, 2001.

Eric S. Raymond. The Art of UNIX Programming. Addison-Wesley, 2003.
Agner Fog. Optimizing software in c4++. Technical report, Technical University of Denmark, 2014.
J. Frohlich. Large Eddy Simulationen turbulenter Strémungen. Teubner, 2006.

E. Peirano & A.-E. Almstedt H. Enwald. Eulerian two-phase flow theory applied to fluidization. Int. J.
Multiphase Flow, 22:21-66, 1996.

David P. Hill. The computer simulation of dispersed two-phase flows. PhD thesis, Imperial College of
Science, Technology and Medicine, 1998.

B. Holenda, I. Pésztor, A. Karpati, and A Rédey. Comparison of one-dimensional secondary settling tank
models. Technical report, European Water Association (EWA), 2006.

M. Ishii. One-dimensional drift-flux-model and constitutive equations for relative motion between pphase
in various two-phase flow regimes. Technical report, Argonne National Laboratory, 1977.

M. Ishii and T. Hibiki. Thermo-Fluid Dynamics of Two-Phase Flow. Springer, 2nd edition, 2011.

M. Ishii, S. Kim, and J. Uhle. Interfacial area transport equation: model development and benchmark
experiments. International Journal of Heat and Mass Transfer, 45:3111-3123, 2002.

M. Ishii, S. Kim, and J. Kelly. Development of interfacial area transport equation. Nuclear Engineering
and Technology, 37(6):525-536, 2005.

R. I. Issa. A simple model for ¢;. Private Communications, 1992. see Hill [18].
M. Peric J. H. Ferzinger. Computational Methods for Fluid Dynamics. Springer, 2002.

Hrvoje Jasak. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid
Flows. PhD thesis, Imperial College of Science, Technology & Medicine, 1996.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®
Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

www.bipm.org/en/si/si_brochure
http://physics.nist.gov/Pubs/SP330/sp330.pdf

[27]

[28]

[29]

[30]

[31]

32]

XI

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice Hall, Inc., 2nd
edition, 1988.

S. Kim, X. Sun, M. Ishii, S. G. Beus, and F. Lincoln. Interfacial area transport and evaluation of source
and sink terms for confined air-water bubbly flow. Nuclear Engineering and Design, 219:61-75, 2002.

G. Kocamustafaogullari and M. Ishii. Foundation of the interfacial area transport equation and its closure
relations. Int. J. Heat Mass Transfer, 38(3):481-493, 1995.

Fabian Peng Kérrholm. Numerical Modelling of Diesel Spray Injection, Turbulence Interaction and Com-
bustion. PhD thesis, Chalmers University of Technology, Géteborg, Sweden, 2008.

Y. Liu, T. Hibiki, and M. Ishii. Modeling of interfacial area transport in two-phase flows. In Advances in
Multiphase Flow and Heat Transfer, volume 4, chapter 1, pages 3-27. Bentham Science Publishers, 2012.

Alejandro Loépez. Lpt for erosion modeling in openfoam — differences between solidparticle and kine-
maticparcel, and how to add erosion modeling. Technical report, Chalmers University of Technol-
ogy, 2014. URL http://www.tfd.chalmers.se/~hani/kurser/0S_CFD_2013/AlejandroLopez/LPT_for_
erosionModelling_report.pdf.

G. B. Macpherson, N. Nordin, and H. G. Weller. Particle tracking in unstructured, arbitrarry polyhedral
meshes for use in cfd and molecular dynamics. Communications in Numerical Methods in Engineering, 25:
263-273, 2009.

Holger Marschall. Towards the Numerical Simulation of Multi-Scale Two-Phase Flows. PhD thesis, Tech-
nische Universitdt Miinchen, 2011.

M. Milelli. A numerical analysis of confined turbulent bubble plumes. PhD thesis, Swiss Federal Institute
of Technology Zurich, 2002.

Hakan Nilsson. Turbomachinery training at ofw8. Technical report, Chalmers University of Technology,
Gothenburg, Sweden, 2013.

Niklas Nordin. Complex Chemistry Modeling of Diesel Spray Combustion. PhD thesis, Chalmers University
of Technology, 2009.

OpenFOAM - Programmer’s Guide. OpenFOAM Foundation, 2.1.0 edition, 2011.
OpenFOAM - User Guide. OpenFOAM Foundation, 2.1.0 edition, 2011.

D. Pfleger and S. Becker. Modelling and simulation of the dynamic flow behaviour in a bubble column.
Chemical Engineering Science, 56:1737-1747, 2001.

S. P. Pope. Turbulent Flows. Cambridge University Press, 2000.

Henrik Rusche. Computational Fluid Dynamics of dispersed two-phase flows at high phase fractions. PhD
thesis, Imperial College of Science, Technology & Medicine, 2002.

Y. Sato and K. Sekoguchi. Liquid velocity distribution in two-phase flow. International Journal of Multi-
phase Flow, 2:79-95, 1975.

J. Smagorinsky. General circulation experiments with the primitive equations; i. the basic experiment.
Monthly Weather Review, 91:99, 1963.

Bjarne Stroustrup. The C++ Programming language. Addison-Wesley, 4th edition, 2013.
Imre Takacs. Experiments in Activated Sludge Modelling. PhD thesis, Ghent University, Belgium, 2008.

D. G. Thomas. Transport characteristics of suspension: VIII. a note on the viscosity of Newtonian suspen-
sions of uniform spherical particles. Journal of Colloid Science, 1965.

A. Tomiyama, I. Kataoka, T. Fukuda, and T. Sakaguchi. Drag coefficients of bubbles. 2nd report. drag
coefficient for a swarm of bubbles and its applicability to transient flow. Nippon Kikai Gakkai Ronbunshu,
61(588):2810-2817, 1995.

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 288

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2013/AlejandroLopez/LPT_for_erosionModelling_report.pdf
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2013/AlejandroLopez/LPT_for_erosionModelling_report.pdf

[49] Berend van Wachem. Derivation, implementation and validation of computer simulation models for gas-
solid fluidized beds. PhD thesis, Delft University of Technology, 2000.

[50] H. K. Versteeg and W. Malalasekera. An introduction to computational fluid dynamics — the finite volume
method. Longman Scientific & Technical, 1995.

[61] A. Vesilind. Design of prototype thickeners from batch settling tests. Water Sewage Works, 115(5):302-307,
1968.

[52] David C. Wilcox. Turbulence Modelling for CFD. DCW Industries, Inc., 1994.

XI This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark. 289

Nomenclature

BC boundary condition

BIT Bubble induced turbulence

CAD computer aided design

CFD Computational fluid dynamics

CG Conjugate gradient

DPE Dispersed phase element

EDF Electricité de France

FPE Floating-point exception

FVM Finite volume method

GAMG Geometric algebraic multi-grid
gce GNU compiler collection

GNU GNU is not Unix

GUI graphical user interface

I/O input and output

IATE Interfacial area transport equation
IGES Initial Graphics Exchange Specification
1T Information technology

LES Large eddy simulation

LPT Lagrangian Particle Tracking

MPI message passing interface

MRF multiple reference frame

00
OOD
OOoP
0S
PDE
Perl
PID

object-oriented

object-oriented design

object oriented programming
operating system

Partial differential equation

An interpreted programming language

process identifier

PIMPLE An algorithm based on PISO and SIM-

PISO

PLE algorithm

Pressure Implicit with Split Operator

POSIX Portable Operating System Interface

RAS

RHS

RNG
SAT

SI

Reynolds averaged simulation
Right hand side

random number generator
Standard ACIS Text

Le Systeme Internationale d’Unités

SIMPLE Semi-Implicit Method for Pressure-

STL
UNIX

VOF

Linked Equations
Surface Tesselation Language

an operating system; ancestor of many
modern operating systems, e.g. all kinds
of Linux, Mac OS X.

Volume of fluid

XI

This offering is not approved or endorsed by ESI® Group, ESI-OpenCFD® or the OpenFOAM®

290

Foundation, the producer of the OpenFOAM® software and owner of the OpenFOAM® trademark.

	Getting help
	Lessons learned
	Philosophy
	Learning by using OpenFOAM
	Learning by tinkering with OpenFOAM
	I learned something today.
	Trouble with the code?

	I Installation
	Install OpenFOAM
	Prerequistes
	Download the sources
	Compile the sources
	Install paraView
	Remove OpenFOAM
	Install several versions of OpenFOAM

	Updating the repository release of OpenFOAM
	Version management
	Check for updates
	Check for updates only
	Install updates
	Workflow
	Trouble-shooting

	Problems with updates
	Missing packages
	Updated Libraries
	Updated sources fail to compile

	Install third-party software
	Install pyFoam
	Install swak4foam
	Compile external libraries

	II General Remarks about OpenFOAM
	Units and dimensions
	Unit inspection
	An important note on the base units
	Input syntax of units

	Dimensionens
	Dimension check

	Kinematic viscosity vs. dynamic viscosity
	Pitfall: pressure vs. pressure
	Incompressible
	Compressible
	Pitfall: Pressure in incompressible multi-phase problems

	Files and directories
	Required directories
	Supplemental directories
	processor*
	functions
	sets

	Files in system
	The main files
	Additional files

	Controlling OpenFOAM
	The means of exerting control
	Variables
	Dictionaries
	Command line arguments

	Syntax of the dictionaries
	Keywords - the banana test
	Mandatory and optional settings
	Pitfall: semicolon (;)
	Switches

	The controlDict
	Time control
	Data writing
	Loading additional Libraries
	functions
	Outsourcing a dictionary
	Pitfalls

	Run-time modifcations of dictionaries
	The fvSolution dictionary
	Solver control
	Solution algorithm control

	Command line arguments
	Getting help: -help
	Getting in control: -dict

	Usage of OpenFOAM
	Use OpenFOAM
	Redirect output and save time
	Run OpenFOAM in the background, redirect output and read log
	Save hard disk space

	Abort an OpenFOAM simulation
	Terminate an OpenFOAM simulation
	Terminate a process in the foreground
	Terminate a background process

	Continue a simulation
	Do parallel simulations with OpenFOAM
	Starting a parallel simulation
	Domain decomposition
	Domain reconstruction
	Run large studies on computing clusters

	Using tools

	III Pre-processing
	Geometry creation & other pre-processing software
	blockMesh
	CAD software
	OpenSCAD

	Salome
	GMSH

	Meshing & OpenFOAMs meshing tools
	Basics of the mesh
	Files
	Definitions

	Converters
	fluentMeshToFoam and fluent3DMeshToFoam

	Mesh manipulation
	transformPoints

	blockMesh
	The block
	The blockMeshDict
	convertToMeters
	vertices
	blocks
	edges
	boundary
	mergePatchPairs

	Create multiple blocks
	Connected blocks
	Unconnected blocks

	Grading
	Parametric meshes by the help of m4 and blockMesh
	The blockMeshDict prototype
	The macro programming language m4
	Conclusion

	Trouble-shooting
	Viewing the blocks with ParaView
	Viewing the blocks with pyFoam

	snappyHexMesh
	Documentation
	Work flow
	Example: Bath Tub
	Boundary layers
	Pitfalls, sources of error and hints on malfunction

	foamyHexMesh
	Crude comparison between a snappy and a foamy bath tub
	SnappyBathTub
	FoamyBathTub

	checkMesh
	Definitions
	Face non-orthogonality
	Face skewness
	Face concavity
	Face warpage
	Cell concavity

	Pitfalls
	Mesh quality - aspect ratio
	Mesh quality - skewness
	Possible non-pitfall: twoInternalFacesCells

	Useful output

	Other mesh manipulation tools
	topoSet
	Usage
	Pitfall: The definition of the geometric region
	Pitfall: renumbered mesh

	setsToZones
	refineMesh
	Usage
	Pitfall: no command line parameters

	renumberMesh
	General information
	Background
	Pitfall: sets and zones will break my bones

	subsetMesh
	createPatch
	stitchMesh

	Initialize Fields
	Basics
	setFields
	mapFields
	Pitfall: Missing files
	Pitfall: Unsuitable files
	Pitfall: Mapping data from a 2D to a 3D mesh
	The work-around: Mapping data from a 2D to a 3D mesh
	The importance of mapping
	Pitfall: binary files

	Case manipulation
	changeDictionary
	A spin-up simulation

	IV Modelling
	Turbulence-Models
	Organisation
	The old ways
	The new order

	Categories
	RAS-Models
	Keywords
	Pitfall: meaningless Parameters

	LES-Models
	Keywords
	Algebraic sub-grid models
	Dynamic sub-grid models
	One equation models

	Pitfalls
	Laminar Simulation
	Turbulence models in twoPhaseEulerFoam
	Laminar simulation with twoPhaseEulerFoam
	Initial and boundary conditions
	Additional files
	Spalart-Allmaras

	Eulerian multiphase modelling
	Phase model class
	A comparison of the phase models in OpenFOAM-2.2
	A comparison of the phase models in OpenFOAM-2.3

	Phase system classes
	The class twoPhaseSystem
	The class multiphaseSystem

	Turbulence modelling
	Modelling strategies
	Implementation in OpenFOAM

	Interfacial momentum exchange
	Diameter models
	No model
	Constant
	Isothermal
	IATE

	Boundary conditions
	Base types
	Geometric boundaries
	Complex boundaries

	Primitive types
	Derived types
	inletOutlet
	surfaceNormalFixedValue
	pressureInletOutletVelocity

	Pitfalls
	Syntax

	Time-variant boundary conditions
	uniformFixedValue

	The Lagrangian world
	Background
	Interaction between Lagrangian particles and Eulerian flow
	Particle tracking

	Libraries
	basic solidParticle
	intermediate parcels

	Cloudy, with a chance of particles
	The code to rule them all

	Times of Use
	Not so telling error messages

	V Solver
	Solution Algorithms
	SIMPLE
	Predictor
	Corrector

	PISO

	pimpleFoam
	Governing equations
	Continuity equation
	Momentum equation
	Implementation

	The PIMPLE Algorithm – or, what's under the hood?
	readTimeControls.H
	pimpleControl

	twoPhaseEulerFoam
	General remarks
	Turbulence
	Kinetic theory

	Solver algorithm
	Continuity

	Momentum exchange between the phases
	Drag
	Lift
	Virtual mass

	Kinetic Theory

	twoPhaseEulerFoam-2.3
	Physics
	Pressure
	Temperature

	Naming scheme
	Solver capabilities
	Turbulence models
	Naming scheme
	kEpsilon
	LaheyKEpsilon
	mixtureKEpsilon
	NicenoKEqn LES
	Pitfall: phase inversion

	Energy equation
	Governing equations

	Momentum equation
	Units
	Implemented equations

	Interfacial interaction
	Blending

	Interfacial momentum exchange
	Drag
	Lift
	Virtual mass
	Aspect ratio models
	Wall lubrication
	Turbulent dispersion

	MRF method - avoiding errors
	Inlet boundaries and MRF zones

	multiphaseEulerFoam
	Fields
	alphas

	Momentum exchange
	drag
	virtual mass
	lift force

	driftFluxFoam
	Governing equations
	Mixture continuity equation
	Mixture momentum equation

	incompressibleTwoPhaseInteractingMixture
	Mixture viscosity models
	mixtureViscosityModel
	slurry
	plastic
	BinghamPlastic

	Relative velocity models - hindered settling
	The base class
	simple
	general

	settlingFoam
	Mixture viscosity
	Relative velocity models
	Turbulence

	VI Postprocessing
	functions
	Definition
	probes
	Pitfalls

	fieldAverage
	faceSource
	Average over a plane
	Compute volumetric flow over a boundary
	Pitfall: valueOutput

	cellSource
	Execute C++ code as functionObject
	Execute functions after a simulation has finished
	execFlowFunctionObjects
	postAverage

	sample
	Usage
	sampleDict
	Output format
	Fields
	Geometric regions
	Pitfalls

	ParaView
	View the mesh

	VII External Tools
	pyFoam
	Installation
	pyFoamPlotRunner
	Plotting options

	pyFoamPlotWatcher
	Custom regular expressions
	Custom regular expression revisited
	Special treatment of certain characters
	Ignoring stuff
	Producing images
	Writing data
	Case analysis

	pyFoamClearCase
	pyFoamCloneCase
	pyFoamDecompose
	pyFoamDisplayBlockMesh
	pyFoamCaseReport

	swak4foam
	Installation
	simpleSwakFunctionObjects
	Extrema of a field quantity

	blockMeshDG
	Installation
	Usage
	Pitfalls
	Uneven number of cells

	postAverage
	Motivation
	Source code

	VIII Updates
	General remarks
	OpenFOAM
	OpenFOAM-2.1.x
	Naming scheme of two-phase solvers

	OpenFOAM-2.2.x
	fvOptions
	postProcessing

	OpenFOAM-2.3.x
	twoPhaseEulerFoam

	IX Source Code & Programming
	Understanding some C and C++
	Definition vs. Declaration
	A classy example

	Namespaces
	const correctness
	Constant variables
	Constants and pointers

	Function inlining
	Constructor (de)construction
	General syntax
	Copy-Constructor
	Initialisation list

	Object orientation
	Abstract classes

	Templates
	Use of templates by OpenFOAM
	Do not fear the template

	Under the hood of OpenFOAM
	Solver algorithms
	Namespaces
	Constants

	Keyword lookup from dictionary
	Mandatory keywords
	Optional keywords

	OpenFOAM specific datatypes
	The Switch datatype
	The label datatype
	The tmp<> datatype
	The IOobject datatype
	Random stuff

	Time management
	Time stepping
	Setting the new time step
	A note on the passing of time
	The Courant number
	The two-phase Courant number

	The registry
	The classes involved
	Using the registry
	Printing the registry

	I/O - input & output
	Output to Terminal - OpenFOAM's very own printf()
	The registry and the I/O or the truth behind runTime.write()

	Turbulence models
	The abstract base class turbulenceModel
	The class RASModel
	RAS turbulence models
	The class kEpsilon

	Debugging mechanism
	Using the debugging mechanism
	Use case: Write intermediate fields

	A glance behind the run-time selection and debugging magic
	Part 1 - TypeName
	Part 2 - defineTypeNameAndDebug
	A walk in the park: demonstrate some of this magic

	General remarks on solver modifications
	Preparatory tasks
	The next steps

	twoPhaseLESEulerFoam
	Preparatory tasks
	Copy the sources
	Rename files
	Adjust Make/files
	The file Make/options

	Preliminary observations
	How LES in OpenFOAM is used
	Integrate LES
	Include required models
	Replace the k- model
	Create a LES model
	Make ready for compiling

	Compile

	X Theory
	Discretization
	Temporal discretization
	Spatial discretization
	upwind scheme
	linearUpwind scheme
	QUICK scheme
	MUSCL scheme

	Continuity error correction
	Conserving the form
	Continuity error

	Momentum diffusion in an incompressible fluid
	Governing equations
	Implementation

	The incompressible k- turbulence model
	The k- turbulence model in literature
	The k- turbulence model in OpenFOAM
	Governing equations
	The source code

	The k- turbulence model in bubbleFoam and twoPhaseEulerFoam
	Governing equations
	Source code

	Modelling the production of turbulent kinetic energy
	Definitions from literature and source files
	Different use of viscosity
	Notation
	Definitions from literature
	Definitions of Rusche and bubbleFoam
	Definitions of Ferzinger and bubbleFoam
	Definition of standard k- of OpenFOAM

	Some theory behind the scenes of LES
	LES model hierarchy
	Eddy viscosity models
	Class hierarchy
	Classification
	Eddy viscosity
	The Smagorinsky LES model
	The oneEqEddy LES model

	The use of phi
	The question
	Implementation
	The origin of fields
	How phi is defined

	The math
	Summary

	Derivation of the IATE diameter model
	Number density transport equation
	Interfacial area transport equation
	Deriving the governing equations

	Interfacial curvature transport equation
	Basic definitions
	Derivation of the governing equations
	Implemented equations

	Interaction models
	Turbulent impact - TI
	Random collision - RC
	Wake entrainment - WE
	Implementation details of the IATEsource class

	Appendix
	The proof for Eqn. (307)

	Derivation of the MRF approach
	Preliminary observations
	Mass conservation equation
	Momentum conservation equation
	Notes on the implementation of the MRF Approach
	OpenFOAM-2.*
	OpenFOAM-3.*

	XI Appendix
	Useful Linux commands
	Getting help
	Display –help
	man pages

	Finding files
	Searching files system wide
	In a certain directory

	Find files and scan them
	Scan a log file
	Running in scripts
	Starting a batch of jobs
	Terminating a running script

	diff
	Meld

	Case setup
	Renaming files

	Miscellaneous

	Archive data

	Bibliography
	List of Abbreviations

