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The inviscid impingement of a jet with arbitrary velocity profile
Denis J. Pharesa) and Gregory T. Smedley
Environmental Engineering Science, California Institute of Technology, Pasadena, California 91125

Richard C. Flagan
Chemical Engineering, California Institute of Technology, Pasadena, California 91125

~Received 24 February 1999; accepted 3 May 2000!

Accurate determination of wall shear stress and heat and mass transfer rates under an impinging jet
requires careful analysis of the boundary layer at the impingement surface due to the large pressure
gradients near the stagnation point. Modeling the inviscid flow just outside the boundary layer
provides the boundary conditions necessary for such an analysis. Previous inviscid models have
considered only a small subset of possible jet velocity profiles and with limited spatial resolution.
In the present work, analytical solutions to the stream-vorticity equation for two-dimensional and
axisymmetric impingement flow with arbitrary velocity profile are found in terms of a surface
integral involving the vorticity function, allowing an iterative determination of the stream function
throughout the impingement region. Surface pressure distributions and streamline plots are
calculated for various impinging jet configurations, including plane, round, and annular jet nozzles.
The calculations show excellent agreement with previous experimental and numerical results, while
requiring relatively short computation times. Flow predictions are also made for impinging jet
configurations for which no previous data or calculations exist. ©2000 American Institute of
Physics.@S1070-6631~00!01708-6#
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I. INTRODUCTION

Impinging jets have most commonly been exploited
the enhanced heat and mass transfer that occurs at the
pingement surface; however, the shear induced along the
face provides the impetus for several important technolog
including surface cleaning1 and jet stripping2,3 in which gas
jets are used to control liquid coating thickness. The indu
shear can also be utilized for characterization of adhe
strength in powder coatings4 or trace particulate residues5 for
subsequent surface sampling and chemical analysis.
ability to map the shear stress distribution for various i
pinging jet configurations is essential for quantification
adhesion strengths and for optimization of surface samp
or cleaning efficiency. Accurate shear stress measurem
under submerged impinging jets using the electrochem
method have produced excellent agreement with a lam
boundary layer analysis close to the stagnation point.6–8 The
removal of monosized microspheres from a surface du
exposure to an impinging gas jet has been shown to s
with the induced wall shear stress9 and has also exhibited
similar agreement with laminar boundary layer theory.10 The
boundary conditions needed to determine the wall sh
stress as well as heat and mass transfer to the surfac
obtained from the inviscid flow just outside the bounda
layer.

Although the field of jet impingement is extremely ric
in the literature~see, for example, Martin11 or Looney and
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2041070-6631/2000/12(8)/2046/10/$17.00

rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

209.213.24.107 On: Wed,
r
im-
ur-
s

d
e

he
-
f
g

nts
al
ar

g
le

ar
are

Walsh12!, only a small number of investigators13–17have de-
veloped inviscid flow models, thereby enabling separ
treatment of the boundary layer. Strand13 obtained the flow
field for potential jet impingement analytically. This solutio
is relevant to the impingement of a jet very close to t
surface, so that impingement occurs before the jet fluid
mixed with the quiescent fluid. The inviscid impingement
fully developed laminar pipe flow was considered by Scho
and Trass,14 who derived an analytical solution assuming
parabolic influx velocity profile. Again, this solution is vali
only for small pipe to plate spacings. Parameswaran15 used a
Green’s function method to solve the two-dimension
stream-vorticity equation for impingement of a fully deve
oped turbulent plane jet. Rubel16,17 developed a model of je
impingement that included turbulent mixing of the jet wi
the surrounding quiescent fluid by using both the fully d
veloped and developing free jet velocity profiles for the flo
into the impingement region. Rubel cast the two-dimensio
and axisymmetric stream-vorticity equations into finit
difference form and solved using relaxation techniques.
though Rubel considered a wider variety of influx veloc
profiles than the previous inviscid models, divergence of
iterative procedure limited the profiles to ones that includ
small velocity defects, while computing time limited the sp
tial resolution of the final solution.

An infinite number of jet velocity profiles are possib
depending on the nozzle shape, height above the surface
Reynolds number, and Mach number. Since only a limi
subset of jet velocity profiles were considered in the previo
investigations, efforts to explore the effect of varying t
velocity profile on technologies such as surface cleaning
sampling may be difficult. To facilitate such a study, w

ess:
6 © 2000 American Institute of Physics
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 This a
present a method to calculate the flowfield produced by
inviscid impingement of a two-dimensional or axisymmet
jet with an arbitrary velocity profile.

In the present work, Rubel’s formulation of the proble
for two-dimensional and axisymmetric inviscid jet imping
ment is used as a starting point. A converging infinite se
solution to the governing equations is derived for an arbitr
influx stream function in terms of a surface integral of t
vorticity function over the whole region of interest. Assum
tions concerning the vorticity throughout the flow allow a
approximate determination of this integral and, thus, a v
reasonable guess of the full flowfield. By interpolating a n
vorticity function distribution from the obtained stream fun
tion, the surface integral can be recalculated and a corre
solution obtained. Iteration of this process coupled with u
derrelaxation techniques yields quickly converging solutio
The final solutions are compared with Rubel’s numerical
lutions and experimental measurements of the surface p
sure distributions created by fully developed and develop
jet impingement. The present method of calculation requ
significantly less computation time than Rubel’s iterati
method with modest computing power~a 233 MHz Macin-
tosh Powerbook G3 was employed for all of the presen
calculations!, while yielding stream function distribution
with high spatial resolution.

Since the present method can handle influx velocity p
files with arbitrarily large velocity defects, the impingeme
of an annular jet profile, which resembles a fully develop
round jet profile with a severe core velocity deficiency,
considered in Sec. V. The flowfield produced by the i
pingement of an annular jet is relevant to the interaction
V/STOL aircraft exhaust with the ground.18

II. FORMULATION

In accordance with Rubel’s formulation all lengths a
velocities are nondimensionalized with the influx veloc
halfwidth and the maximum influx velocity, respectivel
The coordinate system is shown in Fig. 1 withy upward and

FIG. 1. Approximate view of the flow region for determining vorticity su
face integral.
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perpendicular to the surface,x horizontally outward for the
two-dimensional case, andr radially outward for the axisym-
metric case. The velocity components areu, parallel to the
surface, andv, perpendicular to the surface. The governi
equations are

]2c

]y2
1

]2c

]x2
5V~x,y! ~1!

and

]2c

]y2
1

]2c

]r 2
2

1

r

]c

]r
5r 2V~r ,y!, ~2!

for two-dimensional and axisymmetric impingement, resp
tively. In Eq. ~1!, the stream and vorticity functions are d
fined

]c

]x
52v,

]c

]y
5u,

V5
]u

]y
2

]v
]x

,

and in Eq.~2!

]c

]r
52rv,

]c

]y
5ru,

V5
1

r S ]u

]y
2

]v
]r D .

The stream function is defined to be zero along the
centerline and the surface. The influx stream function,F(x),
can be determined from the given influx velocity profile
some distance,b, above the surface. The outflux streamlin
are assumed to become parallel at some sufficiently la
distance,a, from the jet centerline. These boundary con
tions are written

c~x,0!50, ~3!

c~0,y!50, ~4!

]c

]x
~a,y!50, ~5!

c~x,b!5F~x!, ~6!

wherex is simply replaced by the radial coordinate,r, for the
axisymmetric case.

III. ANALYTICAL SOLUTIONS

A. Two-dimensional solution

To solve Eq.~1! analytically, given the inhomogeneou
mixed boundary conditions, Eqs.~3!–~6!, the general solu-
tion was assumed to be the sum of the solution,cH , to the
Laplace equation subject to the given boundary conditi
and the solution,c I , to the given Poisson equation subject
homogeneous boundary conditions. The solution to
former is found by separation of variables and application
the first three boundary conditions, Eqs.~3!–~5!, yielding
only one nontrivial solution,
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
cH~x,y!5 (
n51

`

An sin~gnx!sinh~gny!, ~7!

where gn5@(2n21)/2a# p. The constantsAn are deter-
mined by applying the last boundary condition, Eq.~6!,

(
n51

`

An sin~gnx!sinh~gnb!5F~x!. ~8!

Multiplying both sides of Eq.~8! by sin(gmx)dx and integrat-
ing from 0 toa yields

An5
2

a sinh~gnb!
E

0

a

F~x8!sin~gnx8!dx8 . ~9!

The solution to the Poisson equation subject to hom
enous mixed boundary conditions is found by expand
both the stream and vorticity functions in the following Fo
rier series:

c I~x,y!5 (
m51

`

(
n51

`

Cmn sin~amy!sin~gnx!, ~10!

V~x,y!5 (
m51

`

(
n51

`

Bmn sin~amy!sin~gnx!, ~11!

wheream5mp/b. The Fourier coeficients,Bmn , in Eq. ~11!
are written as a surface integral involving the vorticity fun
tion

Bmn5
4

abE0

aE
0

b

V~x8,y8!sin~amy8!sin~gnx8!dy8dx8.

~12!

Using Eqs.~1!, ~10!, and~11!, we can solve forCmn,

Cmn5
2Bmn

gn
21am

2
. ~13!

The general solution to Eq.~1! is the sum ofcH andc I ,

c~x,y!5 (
n51

` FAn sinh~gny!

2 (
m51

`
Bmn

gn
21am

2
sin~amy!Gsin~gnx!. ~14!

This result is the stream function distribution assuming
influx stream function profile and parallel outflux flow fa
from the origin. Note that the simple inviscid corner flo
solution,c;xy, is recovered asx andy become very small.

Applying Eq. ~14! to impinging jets requires knowledg
of the vorticity function throughout the whole region so th
the coefficients,Bmn , can be determined from Eq.~12!. An
initial guess of the vorticity function is detailed in Sec. IV
allowing calculation of the coefficients,Bmn , leading to a
corrected solution.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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B. Axisymmetric solution

The procedure to calculate the general solution of
axisymmetric case is identical to that presented in Sec. I
for the two-dimensional case. The resulting homogene
stream function is

cH~r ,y!5 (
n50

`

DnrJ1~lnr !sinh~lny!, ~15!

whereln are defined such thatJ0(lna)50. Again, the co-
efficients,Dn , are determined from the fourth boundary co
dition, Eq. ~6!,

Dn5
2

a2J1
2~lna!sinh~lnb!

E
0

a

F~r 8!J1~lnr 8!dr8. ~16!

The inhomogeneous solution,c I , is determined by expand
ing the stream function and the right-hand side of Eq.~2!
into the following series:

c I~r ,y!5 (
m51

`

(
n51

`

FmnrJ1~lnr !sin~amy!, ~17!

r 2V~r ,y!5 (
m51

`

(
n51

`

EmnrJ1~lnr !sin~amy!, ~18!

where, once again, a surface integral involving the vortic
function is embedded in the series coefficients,Emn ,

Emn5
4

ba2J1
2~lna!

E
0

aE
0

b

r 82V~r 8,y8!J1~lnr 8!

3sin~amy8!dy8dr8. ~19!

Using Eqs.~2!, ~17!, and~18!,

Fmn5
2Emn

am
2 1ln

2
. ~20!

The general solution to Eq.~2! subject to the boundary
conditions, Eqs.~3!–~6!, is

c~r ,y!

5 (
n50

` FDn sinh~lny!2 (
m50

`
Emn

am
2 1ln

2
sin~amy!G rJ1~lnr !.

~21!

IV. METHOD OF CALCULATION

A. Initial guess

To apply Eqs.~14! and ~21! to the physical problem of
impingement flow, the surface integrals in Eqs.~12! and~19!
must be evaluated. Therefore, some information about h
the vorticity function behaves within the region of interest
required. Due to the inviscid approximation, the vorticity
constant along streamlines; soV5V(c). This alone is not
sufficient to solve the surface integral; however, if we a
assume that the influx velocity halfwidth is small compar
to the integration limits,a and b, then we can approximate
the stream function~and thus the vorticity function! over
most of the region with a far-field expression.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
The small near-field region close to the intersection
the jet centerline and the surface must be treated separa
Hence an initial guess is formulated by splitting the surfa
integrals into the three regions portrayed in Fig. 1: the infl
region,I , and the outflow region,III , which require far-field
solutions, and the impingement region,II , which requires a
near-field solution.

1. Far-field solutions

The approximation for regionI stems from the observa
tion that the influx near the centerline does not sense
presence of the surface until it is very close to the surfac19

The vorticity function is, therefore, determined by the infl
condition and can be expressed in terms of the influx stre
function,F(x), as

V I~x!5F9~x!, ~22!

V I~r !5
F9~r !

r 2
2

F8~r !

r 3
, ~23!

for the two-dimensional and axisymmetric cases, resp
tively.

Similar to the reasoning for regionI , we assume that the
vorticity close to the surface in regionIII approaches the
outflux condition very soon after redirection. This conditio
is a little harder to implement directly since the outflu
boundary condition only assumes parallel streamlin
Therefore, we refer to Rubel’s method16 for converting the
mixed boundary conditions to Dirichlet boundary condition
For the two-dimensional case, Rubel showed that Eqs.~1!
and ~5! imply that the influx stream function profile is iden
tical to the outflux stream function profile. Thusc(a,y)
5F(y) and the vorticity function in regionIII is taken to be

V III ~y!5F9~y!, ~24!

for the two-dimensional case.
Similarly, Rubel showed that Eqs.~2! and~5! imply that

the influx and outflux stream function are parametrically
lated such thatc(a,y)5F(A2ay). Since the outflux stream
function profile depends on the radial location of the bou
ary, a, it seems reasonable that, as the outflux condition
approached for large radial distances, the far-field stre
function could be written asc(r ,y)5F(A2ry), which ap-
proaches the parallel outflux condition far from the orig
Therefore, we have for the axisymmetric case

V III ~r ,y!5
F9~j!

j2
2

F8~j!

j3
, ~25!

wherej5A2ry .

2. Near-field solutions

The vorticity function in regionII is determined from
the stream function behavior close to the origin. As me
tioned in Sec. III,c;xy for small x and y in the two-
dimensional case. Since vorticity is constant along stre
lines, thenV is a function ofxy,

V~x,y!5V@G~xy!#,

rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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where the functionG is determined by matching the vorticit
function atx5d and y5e with the far-field solutions~see
Fig. 1!. SinceV(x,d)5F9(x) andV(e,y)5F9(y), then

G~xd!5x, G~ey!5y,

and thus

V II ~x,y!5F9S xy

e D , ~26!

for d5e.
For the axisymmetric case,c;r 2y for smallr andy; and

matching the vorticity function atd ande yields

V II ~r ,y!5
F9~z!

z2
2

F8~z!

z3
, ~27!

for d52e, wherez5rAy

e
.

3. The total integral

Since we have estimated the value of the vorticity fun
tion in the three regions, the surface integral in Eqs.~12! and
~19! can be split into three integrals of known functions. F
the two-dimensional case, we have

E
0

aE
0

b

V~x8,y8!sin~amy8!sin~gnx8!dy8dx8

5I 11I 21I 3 , ~28!

where

I 15E
0

aE
e

b

F9~x8!sin~amy8!sin~gnx8!dy8dx8, ~29!

I 25E
0

eE
0

e

F9S x8y8

e D sin~amy8!sin~gnx8!dy8dx8, ~30!

I 35E
e

aE
0

b

F9~y8!sin~amy8!sin~gnx8!dy8dx8. ~31!

These integrals can be computed numerically for an arbitr
influx stream function,F(x). Fortunately, onlyI 2 requires a
two-dimensional integration, sinceI 1 can be integrated di-
rectly with respect toy; and I 3 , with respect tox. Note that
the I 1 andI 3 integrals overlap wherex,y.e, but at least one
of the vorticity functions is essentially zero in this region.

The computation of the surface integral in the axisy
metric case is more time consuming than the tw
dimensional case, since the correspondingI 3 integral re-
quires integration over bothr andy

E
0

aE
0

b

r 82V~r 8,y8!J1~dnr 8!sin~amy8!dy8dr8

5I 11I 21I 3 , ~32!

I 15E
0

aE
e

bS F9~r 8!2
F8~r 8!

r 8
D

3J1~lnr 8!sin~amy8!dy8dr8, ~33!
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I 25E
0

dE
0

eS F9S r 8Ay8

e
D 2

F8S r 8Ay8

e
D

r 8Ay8

e

D
3J1~lnr 8!sin~amy8!dy8dr8, ~34!

I 35E
d

aE
0

bS F9~A2r 8y8!2
F8~A2r 8y8!

A2r 8y8
D

3J1~lnr 8!sin~amy8!dy8dr8. ~35!

For all cases considered in the present study, the te
of the summations in Eqs.~14! and~21! were calculated until
they fell below 0.01% of the maximum stream functio
value. This required calculation of roughly 15 terms of t
outer summation, and a maximum of 50 terms of the in
summation. The number of terms calculated in the in
summation decreased with each subsequent term of the
summation ~i.e., only one term of the inner summatio
needed to be calculated for the last term calculated for
outer summation!.

B. Iteration and convergence

The far-field/near-field stream function approximatio
detailed in the previous sections combined with Eqs.~14!
and ~21!, for the two-dimensional and the axisymmetr
cases, respectively, provide an initial guess of the flow fie
The obtained stream function distribution can be conver
to a vorticity function distribution using the known correl
tion between the vorticity and stream function at the infl
boundary, allowing the vorticity integral to be reevaluat
and a new corrected solution obtained. Repeated correc
of the stream function distribution by this method yields
converging solution under certain conditions. For example
was found that the iteration must be performed with stro
underrelaxation, i.e.,

cn115~12u!cn1uc* ,

whereu<0.3, n is the iteration number, andc* is the inter-
mediate stream function obtained from direct correction
cn. Figure 2 shows the effect of the relaxation parameteru,
on the residual,R, of the iteration for the two-dimensiona
case, where

R5ucn112cnumax.

Figure 3 demonstrates that the initial guess presente
Sec. IV A is important, since convergence is achieved o
for certain matching locations,e. A value ofe51.1 produces
a reasonable initial guess for two-dimensional impingem
that converges rapidly to the final solution. A similar ana
sis of axisymmetric impingement suggests thate50.5 is a
suitable matching location. Other than affecting the conv
gence rate,e has no effect on the final solution.

In the present study, iteration by this method was c
tinued until R<1023. At this prescribed tolerance, anoth
order of magnitude reduction in the residual produced a
than 1023 maximum variation in the velocity at the groun
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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plane (y50) and the outflux stream function profile deviate
from Rubel’s Dirichlet conditions by less than 1%.

V. RESULTS AND DISCUSSION

The discussion that follows compares published surf
pressure data with the present calculations. The surface p
sure is determined from Bernoulli’s equation, i.e.,

P~x!512S ]c

]y U
y50

D 2

and

P~r !512S 1

r

]c

]y U
y50

D 2

,

for the two-dimensional and axisymmetric cases, resp
tively.

A. Two-dimensional jet

1. Fully developed jet impingement

Surface pressure measurements for the impingemen
fully developed two-dimensional jets were made by Scha
and Eusits,20 Kumada and Mabuchi,21 and Beltaos and
Rajaratnam22 for a variety of jet heights,H, and jet Reynolds
numbers. A comparison between their experimental data

FIG. 2. Effect of relaxation on solution convergence.

FIG. 3. Effect of initial guess on solution convergence.
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 This a
the calculated surface pressure distribution, normalized w
the maximum stagnation pressure,Pm , is shown in Fig. 4.
The experimental data collapse to a single curve when
tances are scaled withH. In order to convert to the presen
convention, it was necessary to determine the velocity h
width, bu , at the prescribed influx location. For a free je
Beltaos and Rajaratnam22 found

bu

H
50.10S y!

H
10.15D ,

where y! is the dimensional distance from the jet nozz
Furthermore, it was found that the influx location—taken
be the surface of departure of the jet from free jet behav
—is consistently located at 0.7H from the nozzle. Therefore
conversion simply involved dividing distances by the fac
bu /H 50.085, and the collapse remains.

The solid line in Fig. 4 represents the predicted press
distribution. The values of the integration limits,a and b,
were chosen such that any increase in the these values h
effect on the solution. As observed by Rubel, the valuea
55 andb55 placed the boundaries sufficiently far from th
origin. Choosing the boundaries in this manner suggests
confined jet impingement—the absence of a top surface
would constrict the flow and thus affect the surface press
distribution. The fully developed two-dimensional free j
velocity profile derived by Gortler23 was employed for the
influx profile, i.e.,

2v~x!5~12tanh2~cx!!, ~36!

wherec5tanh21(1/A2).
The pressure distribution shown as a dashed line in

4 was obtained using the numerical method of Rubel.16 In
accordance with his suggestions, a uniform 41341 grid
spanning a 535 square was employed for the finite diffe
ence calculations. The maximum deviation between the
methods of calculation is 1% and occurs at a location ox
51.6.

Figure 5 compares the predicted streamlines for an
pinging, fully developed two-dimensional jet using bo
methods of calculation. The parallel outflux boundary con
tion, which could only be approximated by an outflux strea

FIG. 4. Comparison of predicted surface pressure distribution with exp
mental and numerical results for an impinging two-dimensional jet.
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function distribution in Rubel’s calculations, is met exact
in the present calculations. This is evident in Fig. 5, es
cially for the higher valued streamlines.

2. Developing jet impingement

When a turbulent jet is located less than about 6
widths above the surface (H/D,6), then the jet potentia
core will impinge upon the surface. Since the jet veloc
profile is no longer self-similar due to the uniform veloci
of the potential core, it would not be surprising if the form
the surface pressure profile deviated from similarity. In co
trast, Tu and Wood2 observed pressure profile similarity fo
unconfined jet heights as low asH/D 51, when lengths were
scaled withD. Converting the data to the present conventi
involved scaling distances withbu which slightly increases
with downstream distance.10 Thus, unlike the fully devel-
oped case, similarity breaks down in the present conven
for developing jet impingement.

The experiments of Tu and Wood2 include conditions
that allow direct comparison with Rubel’s16 numerical re-

FIG. 6. Influx velocity profiles used for calculations.

i-

FIG. 5. Two-dimensional impinging jet streamlines as calculated us
Rubel method and the present method.
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sults. To facilitate comparison of the present model with t
of Rubel, we employ the developing jet velocity profile us
in the previous calculations,

2v~x!5
1

2 F11erfS 12x

s D G , ~37!

wheres is a spreading parameter. The difference betw
this velocity profile and that for the fully developed jet
shown in Fig. 6. Figure 7 compares the surface pressure
tributions predicted by the two models with the experime
tally obtained pressure profiles of Tu and Wood2 for H/D
51 and H/D 54. From the empirical observations b
Reichardt23 of the mixing zone in a developing two
dimensional free jet, these jet heights would roughly cor
spond to influx velocity profiles with spreading paramet
of s50.1 ands50.5, respectively. The predicted widenin
of the pressure profile due to potential core impingemen
in good agreement with the presented data.

B. Axisymmetric jet

A major difference between treatment of the tw
dimensional jet and the axisymmetric jet is the handling
the parallel outflux boundary condition. It was shown in S
IV A 1 that parallel outflux implies an essentially parallel fa
field flow for the two-dimensional case, whereas the far-fi
streamlines resemble hyperbolas for the axisymmetric c
The hyperbolic streamlines approach the parallel outfl
condition infinitely far from the origin, so placement of th
outflux boundary at a finite radial location results in a p
mature parallelization of the outflux streamlines. This,
turn, decreases the velocity approaching the boundary
ensure that this effect does not impact the region of str
pressure gradient (r ,4), the outflux boundary must be fa
ther from the origin than in the two-dimensional case. S
tematic variation of the boundary locations revealed tha
radial location ofa510 was sufficient for the present calc
lations.

FIG. 7. Observed and predicted surface pressure distributions for
dimensional developing jet impingement fors50.1 ands50.5.
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1. Fully developed jet impingement

The Schlichting similarity solution23 for a fully devel-
oped, axisymmetric free jet is used to define the influx v
locity profile, i.e.,

2v~r !5
1

~11~A221!r 2!2
. ~38!

This similarity solution is applicable to jet impingement fo
H/D.8.24 Surface pressure measurements for normally
pinging axisymmetric jets at these heights were made
Bradbury25 (12,H/D,20), Beltaos and Rajaratnam19 (20
,H/D,66), and Giralt, Chia, and Trass24 (8,H/D,20).
These data are presented in Fig. 8 along with the calcula
surface pressures using the present method and Rubel’s
merical method. All are in excellent agreement.

2. Developing jet impingement

Similarity of the surface pressure profiles breaks do
when the axisymmetric jet potential core impinges onto
surface (H/D,8).24 Furthermore, we expect that the pre
sure profile should approach that predicted by the invis

o-FIG. 8. Comparison of predicted surface pressure distribution with exp
mental and numerical results for a fully-developed impinging axisymme
jet.

FIG. 9. Measurements of Giralt, Chia, and Trass~1977! for various jet
heights compared with present calculations for developing jet impingem
and Strand’s~1964! potential jet solution.
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impinging potential jet model of Strand13 as the jet height is
decreased. Surface pressure measurements for impingin
veloping jets have been made by Giralt, Chia, and Trass24 for
several jet heights in the range 1.2,H/D,6.0. These data
are presented in Fig. 9 along with Strand’s solution and
present calculations for several values of the potential c
radius,r core. Note the good agreement between the data
the lowest jet height, Strand’s potential solution, and the c
culations for the widest core radius. The developing jet
locity profiles used for the calculations were defined su
thatu51 for r<r core and with Eq.~38! describing the shape
of the mixing zone (r .r core). These profiles are presented
Fig. 10.

3. Stagnation bubbles and annular jet impingement

The shock waves produced within the potential core
an underexpanded free jet cause a decrease in the cent
jet velocity.26 The velocity profile downstream will resemb
the fully developed profile described in Eq.~38! with a ve-
locity deficient core. The impingement of this type of profi
was also investigated numerically by Rubel,17 who predicted
the conditions at which areas of recirculation would deve
near the stagnation point. Rubel used a family of veloc
profiles described in terms of the location of the maximu
velocity, r m , and the core velocity deficiency,dw—the dif-
ference between the maximum and centerline velocit
These profiles were defined such that the centerline vorti
was nonzero fordw.0, i.e.,

FIG. 10. Developing jet velocity profiles.

FIG. 11. Streamline plot with stagnation bubble forr m50.35 and dw

50.16.
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2v~r !512dw12dw

r 2

r m
2 S 12

1

2

r 2

r m
2 D , 0<r<r m ,

~39!
2v~r !5~11cm~r 2r m!2!22, r>r m ,

wherecm5(A221)/(12r m)2. Using these profiles, Rube
found recirculation regions fordw /r m.0.22, but was unable
to find solutions fordw /r m.0.47. The present method yield
results similar to Rubel fordw /r m,0.47. Solutions are also
possible fordw /r m.0.47. Figure 11 compares streamlin
calculated with the present method with those calculated
ing Rubel’s method17 for r m50.35 anddw50.16. The stag-
nation bubble appears as the area within the dividing stre
line corresponding toc50.

Further increase in the core deficiency produces a ve
ity profile that resembles the near-nozzle profile of a fr
annular jet. Figure 12 compares the profile calculated us
Eq. ~39! (r m50.65, dw50.80) with the free annular jet ve
locity data of Sheen, Chen, and Jeng27 at a downstream dis
tance of about one outer diameter. In this case, the in
diameter was close to one-half of the outer diameter.
cause of the severe core velocity deficiency (dw /r m

51.23), the impingement of such a flow could not be trea
with Rubel’s method. Figure 13 depicts streamlines cal
lated with the present method for this case. Since no exp
mental data was found in the literature on the size of
recirculating region under an impinging annular jet, compa
son with measurements is not possible. However, some

FIG. 12. Comparison of annular free jet velocity data at a downstre
distance one outer diameter with Eq.~39!.

FIG. 13. Streamline plot with overlaid influx velocity profile for annular j
impingement (r m50.65 anddw50.80).
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dictions of the shape of the recirculation region are presen
in Fig. 14, which depicts the streamlines corresponding
c50 for several core velocity deficiencies. A plot of th
locations of the dividing streamline along the jet centerl
and the surface (yd andr d , respectively! against the relative
core velocity deficiency,dw /r m , for r m50.3 andr m50.6 is
presented in Fig. 15. The critical value of the relative co
velocity deficiency leading to formation of a recirculatio
region agrees with Rubel’s predicted value ofdw /r m

50.22. The value ofr d could easily be determined exper
mentally, as it would be accompanied by a maximum in
surface pressure profile. Experimental verification of th
predictions would require knowledge of the velocity profi
at the top of the impingement region. Reasonable agreem
with experiment would confirm the validity of inviscid mod
els for the impingement region of annular and under
panded jet impingement on a flat surface, and would sup
Rubel’s17 suggestion that the inviscid total pressure def
mechanism is responsible for the observed stagna
bubbles under impinging underexpanded jets.

FIG. 14. Shape of recirculation zone for various core velocity deficien
(r m50.60,dw50.15,0.25,0.45,0.65).

FIG. 15. Predicted dependence of dividing streamline location on core
ficiency for r m50.3,0.6.
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VI. CONCLUSION

A method for calculating the flow field for axisymmetri
and two-dimensional inviscid impingement flow is pr
sented. Expressions for the stream function were derive
terms of the vorticity function distribution which was ap
proximated by matching far-field and near-field expressio
at prescribed locations, thus yielding a corrected soluti
Successive correction of the stream function distribution
sulted in a quickly converging solution. The method w
applied to flow calculations for various two-dimensional a
axisymmetric impinging jet configurations, including annul
jet impingement, which has not been considered in previ
inviscid calculations. The accuracy of the present calcu
tions is sufficient to demonstrate agreement with previo
numerical results and with the available data.
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