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Direct numerical simulations (DNS) and experiments are carried out to study fully 
developed turbulent pipe flow at Reynolds number Re, M 7000 based on centreline 
velocity and pipe diameter. The agreement between numerical and experimental results 
is excellent for the lower-order statistics (mean flow and turbulence intensities) and 
reasonably good for the higher-order statistics (skewness and flatness factors). To 
investigate the differences between fully developed turbulent flow in an axisymmetric 
pipe and a plane channel geometry, the present DNS results are compared to 
those obtained from a channel flow simulation. Beside the mean flow properties and 
turbulence statistics up to fourth order, the energy budgets of the Reynolds-stress 
components are computed and compared. The present results show that the mean 
velocity profile in the pipe fails to conform to the accepted law of the wall, in contrast 
to the channel flow. This confirms earlier observations reported in the literature. The 
statistics on fluctuating velocities, including the energy budgets of the Reynolds 
stresses, appear to be less affected by the axisymmetric pipe geometry. Only the 
skewness factor of the normal-to-the-wall velocity fluctuations differs in the pipe flow 
compared to the channel flow. The energy budgets illustrate that the normal-to-the- 
wall velocity fluctuations in the pipe are altered owing to a different ‘impingement’ or 
‘splatting’ mechanism close to the curved wall. 

1. Introduction 
Direct numerical simulation (DNS) is an established numerical technique to study 

the details of turbulent flows. Databases generated by DNS provide results on 
turbulent flow statistics which are in good agreement with experiments (e.g. Kim, Moin 
& Moser 1987; Spalart 1988; Antonia et al. 1992). These databases also offer the 
opportunity to extract information from the flow field which cannot, or only with 
much difficulty, be obtained from experiments. The availability of this detailed flow 
information has certainly improved our understanding of physical processes in 
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turbulent flows which thus emphasizes the importance of DNS in present scientific 
research. 

In 1987, Kim, Moin & Moser (hereinafter referred to as KMM) applied DNS to 
investigate fully developed turbulent flow between two parallel plates. Using nearly 
4 x lo6 gridpoints, they computed various statistics of the flow field at a Reynolds 
number based on mean centreline velocity and channel half-width h equal to 3300 
(h+ = 180). The general characteristics of the turbulence statistics showed good 
agreement with the experimental results of Eckelmann (1974) and Kreplin & 
Eckelmann (1979): except for some flow quantities in the wall layer. Recently, using the 
same code, a similar DNS was performed at a larger Reynolds number of 7900 
(h+ = 390). Together with the results of the previous DNS of KMM, Antonia et al. 
(1992) focused on low-Reynolds number effects in the inner region of the turbulent 
flow. The DNS and experimental results reported in their paper agreed well and indeed 
showed significant low-Reynolds-number effects. Beside these two computations, 
several other direct simulations of wall-bounded turbulent flows have been reported in 
the literature recently, e.g. plane channel flow by Lyons, Hanratty & McLaughlin 
(1991), developing turbulent boundary layer on a flat plate by Spalart (1988), turbulent 
flow in a rotating channel by Kristoffersen & Andersson (1993) and turbulent flow 
through a square duct by Gavrilakis (1992). These computations all have in common 
that they consider turbulent flow in a geometry with a rectangular cross-section or over 
a flat plate. 

From experiments it is known that flows in geometries with a cylindrical cross- 
section show effects different from those observed in geometries with a rectangular 
cross-section. A well-known example is the difference in the rate of spreading of a plane 
and a round jet. Experimental data indicate that a round jet spreads approximately 
15% less rapidly than a plane jet, which up to now is largely unexplained. Also for 
plane channel and axisymmetric pipe flows, experimental data show remarkable 
differences which are due to the different flow geometry. Patel & Head (1969) already 
reported observed deviations in mean velocity profiles obtained from fully developed 
turbulent channel and pipe flow measurements. They demonstrated that the flow in a 
pipe fails to conform to the accepted law of the wall even at Reynolds numbers 
considerably above 3000. In contrast, turbulent channel flows appear already to match 
the law of the wall at these low Reynolds numbers. Patel & Head concluded that ‘at 
least some of the differences between pipe and channel flow results may be explained 
by the differences between axisymmetric and plane flow’. 

Later, Huffman & Bradshaw (1972) analysing existing experimental data also 
showed differences in the logarithmic form of the velocity distribution obtained from 
pipe and channel flow measurements. They concluded that von KArmAn’s constant K in 
low-Reynolds-number turbulent flows appears to be fixed at a best-fit value of 0.41, but 
that the additive constant C depends on external influences, e.g. transverse curvature 
effects. The dependence of C on transverse curvature would illustrate that the viscous 
sublayer is more sensitive to the transverse curvature than the rest of the inner layer. 
For increasing Reynolds numbers (Re, = u, D / v  > 2000), the constant C also tends to 
become constant at a value close to 5.0 (Huffman & Bradshaw 1972). 

In flows where a logarithmic velocity distribution is established, its extent appears to 
be different in an axisymmetric geometry compared to a plane geometry. Although no 
proof of existence of a logarithmic law is valid for distances from the surface more 
than, say, 0.1-0.2 times the half-width of the flow, the experimental results of Wei & 
Willmarth (1989) obtained from turbulent channel flow measurements, show a mean 
streamwise velocity profile following the logarithmic velocity distribution up to the 



Fully developed turbulent pipe flow 177 

centreline of the channel (y' > 1000) for Re equal to 40 x lo3. Laufer (1954) and Lawn 
(19711, in experiments on turbulent pipe flow at nearly the same Reynolds number, 
obtained mean velocity profiles matching the logarithmic distribution only up to 
yf  = 300. Beyond yf = 300, the mean velocities exceeded the logarithmic distribution, 
indicating the presence of a wake region near the centreline of the pipe. 

Considering these experimental observations, it becomes clear that an axisymmetric 
geometry affects the appearance of a logarithmic velocity distribution with respect to 
(i) the (lowest) Reynolds number at which a logarithmic velocity distribution is 
obtained, (ii) the values of K and C in the logarithmic distribution and (iii) the apparent 
radial extent of this distribution. 

Until now, comparisons of statistics between pipe and channel flows appear to be 
restricted to mean velocity profiles for which some differences are already observed. To 
investigate whether the axisymmetric flow geometry also affects the statistics of the 
fluctuating velocities, detailed statistical results of DNS on low-Reynolds-number 
turbulent pipe flow are reported in this paper. First, the results of two DNS 
computations are compared to corresponding experimental results to verify the 
numerical data. These experimental results are obtained using three different 
measurement techniques in two different experimental facilities. Next, the DNS results 
are compared to the data of KMM obtained from their DNS of fully developed 
turbulent channel flow at exactly the same Reynolds number (Re, based on wall 
friction velocity u, and channel half-width h or pipe radius R in both cases equals 180). 
The similarities and differences between axisymmetric and plane flow are elucidated for 
various flow statistics, including higher-order moments and energy budgets of the 
Reynolds stresses. Where possible, the observed differences are explained in terms of 
a different flow geometry. 

The DNS computations were performed independently by Eggels & Nieuwstadt and 
by Unger & Friedrich, both using a similar code, the numerical procedures of which 
are discussed briefly in the next section. The hot-wire anemometry (HWA) 
measurements were carried out by Weiss (see Weiss 1993); the laser Doppler 
anemometry (LDA) and particle image velocimetry (PIV) measurements were 
performed by Westerweel & Adrian (see Westerweel 1993). The experimental methods 
and apparatus are described in 9 3 .  The statistical results of the simulations and 
experiments are compared in $4. From the DNS data, the energy balances of the 
Reynolds-stress components are computed and shown in 9 5.  Finally, a summary and 
the conclusions of the present study are reported in 96. 

2. Numerical procedures for the DNS computations 
2.1. Computational domain and numerical resolution 

The turbulent pipe flow is studied in the cylindrical geometry shown in figure 1 (a). The 
diameter of the pipe is denoted by D, and the length of the computational domain by 
L, with L = 5D. The Reynolds number, based on pipe diameter D and on centreline 
velocity U, equals approximately 7000 (based on mean velocity U, and shear stress 
velocity u,, it is 5300 and 360 respectively). Periodic boundary conditions for velocity 
components and pressure are applied in the circumferential direction. At the pipe wall 
no-slip boundary conditions are imposed for all velocity components whereas 
Neumann boundary conditions are used for the pressure. Since the fully developed 
turbulent pipe flow considered here is homogeneous in the streamwise direction, 
periodic boundary conditions are also imposed in the axial direction. However, the 
length of the computational domain must be chosen long enough to include even the 
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FIGURE 1. (a) Flow geometry and coordinate system used for turbulent pipe flow simulations. (b) 
Experimental apparatus for single hot-wire anemometer measurements (c) Optical configuration for 
the LDA measurements. ( d )  Optical configuration for the PIV measurements. 

largest-scale structures. This can be achieved by ensuring that the fluctuating velocities 
are uncorrelated at a streamwise separation of half the lengthscale L. We will return 
to this point in $4.2 when the results are presented. 

To justify a direct numerical simulation without inclusion of any turbulence model, 



Fully developed turbulent pipe $ow 179 

the spatial and temporal resolution must be high enough to capture even the smallest 
scales of the turbulent motion. Grotzbach (1983) formulated several criteria which are 
followed here to estimate the numerical resolution required. His criterion (i) concerns 
the size of the computational domain which should be sufficiently large to record all 
relevant large-scale structures. This will be discussed in $4.2. Criteria (ii) and (iii) 
require that the normal-to-the-wall grid width distribution must be able to resolve the 
steep gradients in the velocity field near the wall and that the mean grid width must be 
smaller than the smallest relevant turbulence elements. According to Grotzbach, 
quantification of these qualitative criteria can be a serious problem, but the latter two 
can be met by taking at least three gridpoints within the viscous sublayer and by 
ensuring that the mean grid width A satisfies A < nq, with g the Kolmogorov 
lengthscale. The latter criterion also applies for the imposed time-step At which must 
satisfy At d 7, with 7 the Kolmogorov timescale. 

The present computations are carried out with 96 x 128 x 256 gridpoints equally 
spaced in the Y, 8, z-direction respectively. The gridspacing is computed as Ar+ z 1.88 
and Az+ z 7.03 in terms of viscous wall units (Y /u , ) .  The circumferential gridspacing 
varies linearly with r and reaches a minimum value ($ArAO)+ x 0.05 near the centreline 
of the pipe and a maximum value ('DAO)+ z 8.84 at the pipe wall. The first gridpoint 
near the pipe wall at which the axial velocity is computed is located at y+ = 0.94. With 
Ar+ x 1.88, it follows that three gridpoints are placed within the viscous sublayer, the 
depth of which approximately equals 5 wall units. Hence, criterion (ii) is satisfied. The 
mean grid width A computed as A+ = [(TAT A0 Az)i]+ equals 4.9 wall units near the wall 
where A+ is largest. The averaged Kolmogorov lengthscale q+ in wall units and based 
on the volume-averaged viscous dissipation ( e ) ,  is estimated from an equilibrium state 
between the energy production by the mean pressure gradient and the viscous energy 
dissipation. For the given Reynolds number, q+ equals approximately 1.6 (KMM 
obtained I+ x 2 for their turbulent channel flow, and Antonia et al. (1992) 1.5 to 42 
wall units without any dependence on Reynolds number). Thus ny+ equals 
approximately 5.0 and hence criterion (iii) is also satisfied. The present gridspacing 
resembles the gridspacing employed by KMM who used a mean gridspacing of 2.8, 7 
and 12 viscous wall units in the normal-to-the-wall, spanwise and streamwise directions 
respectively. However, they employ a non-uniform grid in the normal-to-the-wall 
direction which allows them to locate more gridpoints in the sublayer (first gridpoint 
at y+ z 0.05). With the aid of this non-uniform grid, spatial variations in the normal- 
to-the-wall direction can be represented more accurately because of the larger number 
of gridpoints. It does not naturally imply that the spatial resolution in the near-wall 
region is much better. To achieve such a better resolution, a finer gridspacing in 
streamwise and circumferential (spanwise) directions would be more effective in our 
opinion. In these directions, the spatial resolution in the present DNS computations is 
vcry similar to that employed by KMM. 

The time-step At in the numerical simulations equals 0.0002t*, where t* is the 
dimensionless timescale defined as the ratio of pipe diameter D and friction velocity u,. 
Similar to the procedure above where the Kolmogorov lengthscale was expressed in 
terms of wall units, the Kolmogorov timescale 7 can be expressed in terms of t*. We 
then obtain 7 = 0.0068t*. Clearly, the imposed time-step At is much smaller than the 
Kolmogorov timescale, indicating that the resolution in time is also sufficiently fine to 
resolve all scales of motion. On physical grounds, At could have been increased, but the 
admissible time-step is restricted to avoid numerical instabilities (Schumann 1975). 
This is a major disadvantage of the explicit time-integration schemes employed, which 
will be discussed in the following subsection. 
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2.2. Numerical techniques 

The spatial and temporal evolution of an incompressible Newtonian fluid flow can be 
written in dimensionless form, using u, and D as velocity and length scales for 
normalization, as 

v-v = 0, (1) 

-+(v.V)v av = -vp+-v 1 2  v 
at Re, 

with u the velocity vector. Re, is thus defined as u,D/v. The pressure gradient -Vp is 
split into a mean pressure gradient - V P  and a fluctuating pressure gradient -Vp' 
such that periodic boundary conditions in the streamwise direction can be employed 
for the fluctuating pressure p'.  The mean pressure gradient - V P  only has a non-zero 
component in the streamwise direction in order to balance the net viscous friction at 
the pipe wall. This non-zero component equals 4u,2/D in dimensional form, i.e. it 
equals 4 when scaled with D and u,. 

Equations (1) and (2) are discretized by means of the finite volume technique 
according to which they are integrated over a small gridvolume (Schumann 1973). A 
staggered grid is used in which the pressure is defined at the centre of each gridvolume 
and the velocity components at the interfaces of the gridvolumes. To carry out the 
integration numerically, the midpoint integration rule is used. Velocity components 
and their derivatives, which have to be determined at locations in between their 
corresponding positions in the gridvolume, are obtained by linear interpolation and 
central differences respectively. As a result, the spatial discretization is of second-order 
accuracy. The basic numerical technique used here thus differs significantly from the 
one used by KMM and Antonia et al. (1992) who employed a spectral method to 
represent the spatial derivatives. At a similar numerical resolution, spectral methods 
provide better estimates for the spatial derivatives, especially at high wavenumbers 
(small scales) where finite difference methods may suffer from numerical dispersion and 
diffusion. On the other hand, spectral methods are only applicable for flow 
computations in simple geometries with periodic boundary conditions in one or more 
directions. 

In a comparative study, Rai & Moin (1989) examined the influence of a finite 
difference us. a spectral approach on the statistical results by comparing the turbulence 
statistics of the KMM computations with those obtained using various finite difference 
techniques. They concluded that the prevalent method for DNS of turbulent flows is 
the spectral method, but that for complex geometries finite difference techniques, 
especially high-order accurate upwind-biased methods, are good candidates. Their 
statistical results obtained from the finite difference computations showed a reasonable, 
but not excellent, agreement with the results obtained earlier with the spectral method. 
However, the numerical resolution in these finite difference computations (64 x 65 x 64 
and 128 x 85 x 128 gridpoints us. 192 x 129 x 160 gridpoints in case of the spectral 
method) is most likely to be insufficient to justify a conclusion on the performance of 
finite difference schemes. With this coarse numerical resolution, not all relevant scales 
of turbulent motion are captured. In $54 and 5 of the present work, it will be shown 
that a DNS computation based on the finite volume technique generates realistic 
statistical results provided that the numerical resolution is sufficiently fine. A similar 
conclusion can be drawn from the DNS results on turbulent duct flow reported by 
Gavrilakis (1992) and on the rotating channel flow by Kristoffersen & Andersson 
(1 993). 
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In view of the cylindrical flow geometry considered in our work, the present 
computations are performed using a cylindrical coordinate system in equations (1) and 
(2). We will now briefly consider some difficulties caused by the application of this 
cylindrical coordinate system. Owing to the curvature of the coordinate system, the 
governing equations contain a singularity at the centreline of the pipe ( r  = 0). Using 
the finite volume technique, this singularity can be circumvented rather easily without 
much special effort.? Beside the singularity at the centreline, the curvature of the 
cylindrical coordinate system also affects the time-integration. The admissible time- 
step in explicit time-integration schemes, which are mostly used for these time- 
dependent numerical simulations, is restricted by stability criteria to avoid numerical 
instabilities (Schumann 1973, 1975). For the advective terms, the allowable time-step 
is linearly proportional to the gridspacing; for the diffusive terms, to the square of the 
gridspacing. Since the gridspacing in the circumferential direction is proportional to 
rA8 (11s. constant Ar and Az in the radial and axial directions respectively), the 
admissible time-step is severely limited by the small gridspacing close to the centreline 
where r becomes of order Ar. To avoid a too strong restriction on the time-step, all 
terms containing derivatives in the circumferential direction are treated implicitly in 
time : the advective terms with the Crank-Nicolson scheme and the diffusive terms 
with the Euler-backward scheme (Unger & Friedrich also used the Euler-backward 
scheme for the advective terms). All other terms involving derivatives in the radial 
and axial directions remain treated explicitly in time: the advective terms with the 
leap-frog scheme and the diffusive terms with the lagged Euler-forward scheme. The 
fluctuating pressure distribution p’ is obtained from a predictor-corrector technique 
which results in a Poisson equation for p’. A FFT-based routine is used to solve this 
Poisson equation at every time-step. For a more extended description of the numerical 
details of the codes, we refer to Unger & Friedrich (1993) and Eggels (1994). 

The DNS computations are initiated from randomly generated fields with mean and 
r.m.s. velocities fitted to preliminary HWA data. Since the fluctuations in these random 
velocity fields are large on small spatial scales, the viscous dissipation is large which 
appears to remove the initial velocity fluctuations very effectively and to laminarize the 
flow. To circumvent such a decay of fluctuations, the viscosity was reduced initially. A 
simulation using the same numerical resolution but with an artificially reduced 
viscosity (Re, sz 6000) was performed first by Eggels & Nieuwstadt. At t = 1 .Of*, with 
t* the dimensionless timescale D/u,, the resulting flow field was used as the initial field 
for the actual DNS at the correct Reynolds number (Re, = 360). Unger & Friedrich 
followed a somewhat different approach. They started with Re, = 3000 at t = 0 and 
gradually reduced Re, to end up with Re, = 500 at f = l.Ot*. This flow field was then 
used to start the actual DNS at Re, = 360. The time advancement in the DNS by 
Eggels & Nieuwstadt was carried out until t = lot* to achieve a flow field independent 
of the random initial conditions (Unger & Friedrich advanced until t = 12t*). At t = 

lot* (respectively t = 12t*), the total shear stress profiles versus r / D  showed an almost 
linear distribution, indicating that the computations had reached a nearly statistically 
steady state. The averaged deviation of the total shear stress profile with respect to the 
linear distribution is less than O.O36pu,2 (the maximum deviation is less than O.O7pu,2). 
From t = lot* and t = 12t*, the computations were continued until t = 14t* and t = 
16t* respectively. In these intervals, the final statistical data have been accumulated by 
spatial averaging in the homogeneous streamwise and circumferential directions and 

t The radial discretization near the centreline is not treated exactly similarly in the two codes. For 
details, we refer to Unger & Friedrich (1993) and Eggels (1994). 
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by time averaging over 41 (nearly independent) data fields, all separated by O.lt*. The 
DNS performed by Eggels & Nieuwstadt (referred to as DNS(E)) was carried out on 
the Cray Y-MP4/464 computer of the Academic Computing Services Center (SARA) 
in Amsterdam and required 39.6 Mwords of memory. The total CPU-time was 
approximately 160 hours, or about 11.4 CPU-hours per t* .  Each complete time-step 
took about 8.2 CPU-seconds for the given numerical resolution of 96 x 128 x 256 
gridpoints. The DNS by Unger & Friedrich (referred to as DNS(U)), was carried out 
on the Cray Y-MP4/464 computer of the Leibniz computer centre (LRZ) of the 
Bavarian Academy of Sciences in Munich. The computer requirements corresponding 
to their DNS are respectively: 29.7 Mwords memory, total CPU-time of 152 hours, 9.5 
CPU-hours per t* and 6.8 CPU-seconds per time-step. Their code is less memory 
consuming than the code used by Eggels & Nieuwstadt because of a different internal 
storage of the three-dimensional velocity and pressure fields. 

3. Experimental methods and apparatus 
3.1. HWA measurements 

A single-wire anemometer probe traversed the pipe cross-section 101 diameters 
downstream from the inlet to obtain profiles of mean and fluctuating velocity in a fully 
developed turbulent pipe flow. The measurements were carried out in the experimental 
set-up shown in figure 1 (b). Quiescent air from the laboratory was drawn through a test 
section of straight, honed aluminium pipe by a Roots blower via a calibrated sonic 
nozzle situated between the test section and the blower. Use of a choked sonic nozzle 
allowed precise measurement of the mass flow rate (< 0.5 % absolute error) while also 
isolating the test section from pressure fluctuations induced by the blower. 

The test section consisted of a bell-mouth inlet followed by three pieces of aluminium 
pipe, identically honed to an internal diameter of 95.4 mm with a surface roughness 
of less than 0.5 pm. Concentric alignment of better than 50 pm (< 0.2 wall units for 
Re, = 5450) between the various pieces of test piping was accomplished through special 
split-ring flange joints with O-ring seals. A disc, perforated with 4.5 mm diameter holes 
on 6.5 mm centres (porosity = 44 YO), was located at the inlet plane of the bell-mouth 
to act as a flow tripping device for the 2.375 m (= 250) flow development section, 
followed by a 7.316 m (= 770) test pipe and an additional 1 .OOO m (= 10.50) pipe. 
The hot-wire sensor traversing mechanism is located 9.691 m (= 101.50) downstream 
of the inlet in between the second and third honed aluminium pipe sections. The 
traversing mechanism consists of a 10mm wide annular ring, of the same internal 
diameter as the aluminium pipe, on which a micrometer-driven slide mechanism is 
mounted to accurately locate (2 0.01 mm) and vary the radial position of the hot-wire 
probe. In addition, the ring can be rotated in a plane perpendicular to the pipe axis in 
order to vary the azimuthal position of the probe. Following the total test section of 
112.50 aluminium pipe is a measurement section consisting of 250 of 101 mm 
diameter plastic pipe and a 6.8 mm diameter calibrated sonic nozzle to measure the 
mass flow rate. Additional plastic pipe connects the nozzle to the Roots blower piping. 

The single wire is first calibrated with a laminar pipe flow calibration system which 
develops velocities in the range of 0.05-1.5 m s-l. The probe axis is aligned with the 
centreline of the pipe and the flow varied to obtain temperature-compensated 
calibration curves of anemometer bridge voltage vs. velocity. The probe is then 
mounted in the traversing mechanism using a 90" probe holder which locates the probe 
tip 95 mm upstream of the traversing ring in undisturbed flow to measure the velocity 
profiles. The signal from the TSI IFA 100 constant-temperature anemometer circuit is 
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sampled every 1 ms (well below the smallest timescale expected: 7' = v/u," z 5 ms and 
Kolmogorov timescale 7 z 12 ms) using an electronic data acquisition system and 
analysed with a personal computer. 

The 4 pm diameter platinum-coated tungsten single-wire probe sensor has a length 
of 1 mm (approximately 4.0 wall units) and was used to measure the instantaneous 
axial velocity component. The accuracy of the mean velocity measurement ranges from 
1 % at the pipe centreline to about 4% very close to the wall. Reproducible 
measurements of mean and fluctuating velocity as well as higher-order turbulence 
statistics were obtained with this technique. A precision micro-manometer is used to 
measure the pressure drop along the test section from which the friction velocity is 
determined with an accuracy of 1.5%. Further details concerning the HWA 
measurements can be found in Weiss (1993). 

3.2. LDA and PIV measurements 

The laser Doppler anemometry and particle image velocimetry measurements were 
made near the end of a 17 m ( = 1340) smooth pipe with an inner diameter of 127 mm 
and a Reynolds number of 5450 based on the mean velocity and the diameter of the 
pipe.? The pipe flow facility was previously used for accurate hot-wire measurements 
of fully developed turbulent flow at a Reynolds number of 50000 (Lekakis 1988). The 
air flow through the pipe was driven by a blower, powered by a d.c. motor with a 
variable transmission. The air passed a settling chamber, a honeycomb, and a square 
grid with a mesh size of 1 mm and a solidity of about 1, before it entered the pipe. The 
grid introduced an initial disturbance, which reduced the inlet length that was required 
before the flow became fully turbulent. At high Reynolds numbers an inlet length of 
40 to 50 pipe diameters is considered sufficiently long (Schlichting 1979) to produce a 
fully developed turbulent flow. At low Reynolds numbers, the development of the flow 
also depends on the flow conditions at the pipe inlet: to obtain a fully developed 
turbulent pipe flow, the turbulence level at the pipe inlet (i.e. directly behind the grid) 
should be sufficiently high (Wygnanski & Champagne 1973). Measurements carried 
out with LDA indicated that the flow at the test section for the PIV measurements was 
fully developed, This indirectly verified that the initial disturbances caused by the grid 
at the pipe inlet were sufficient to obtain fully developed turbulent flow. 

Using LDA, the axial component of the velocity was measured with a 5 mW HeNe 
laser in a dual-beam configuration, with a photo-multiplier in the forward scattering 
direction (see figure lc). The laser beam was split into two parallel beams with a 
separation of 48 mrn, and these two beams were focused on a measurement spot with 
a 250mm focal length lens. The measurement volume defined by the e-2 optical 
intensity was 250 pm in diameter and 2.6 mm long (in terms of viscous wall units 
respectively 0.7 and 7.6 units). The output signal from a TSI 1090 frequency tracker 
was sampled at 10 Hz (0.1 s roughly corresponds to an Eulerian timescale, estimated 
by dividing the pipe diameter by centreline velocity) and integrated over 300 s to 
determine the mean value of the velocity. The root-mean-square (r.m.s.) fluctuating 
velocity was measured with a digital r.m.s. voltmeter and an integration time constant 
of 100 s. The estimated statistical sampling errors for the measured velocities were 
about 0.3 YO for the mean and 1-2% for the r.m.s. 

For both LDA and PIV measurements, the flow was seeded with 1-2 pm diameter 

The mean velocity and Reynolds number based on this mean velocity slightly differ here from 
the values reported in the original paper by Westerweel at al. (1993) because the mean velocity profile 
has been integrated numerically using Simpson's integration rule instead of the trapezium rule 
adopted originally. 
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oil droplets generated by two atomizers. The droplets were small enough to follow the 
motions of the air flow very accurately. The PIV laser sheet illuminated a plane through 
the centreline of the pipe, and a view area that included the full diameter of the pipe 
was photographed. The optical system for the PIV measurements is sketched in figure 
1 (d) .  Light pulses were provided by two frequency-doubled Nd:YAG pulsed lasers 
with an energy of 130 mJ per pulse at a repetition rate of 20 Hz. The firing of the lasers 
was accurately synchronized with a time delay of 0.3 ms (accuracy to f one part in 
1 05). The orthogonally polarized laser beams were combined into a double-pulsed 
beam by a polarization splitter plate. A prism at the pipe outlet reflected the beam 90" 
into the pipe. A spherical lens (1000 mm focal length) combined with a cylindrical lens 
(- 100 mm focal length) transformed the beam into a thin, vertical light sheet that 
spanned the entire diameter of the pipe with a thickness of 0.4 mm (= 1.15 viscous wall 
units). The light sheet had a non-uniform light distribution, with a maximum intensity 
near the centreline and with gradually reducing intensity towards the pipe wall. In total 
33 photographs were taken which all covered the entire pipe diameter D and a length 
of 1.1 1D in the streamwise direction. Each photograph yielded instantaneous two- 
dimensional data sets of the axial and radial velocities at 8500 points. The PIV 
recordings were analysed with the interrogation system described by Landreth & 
Adrian (1990). For specific details of the latter analysis and an extended description of 
the experimental set-up, refer to Westerweel (1993) (some details are also reported by 
Westerweel et al. 1993). 

4. Turbulence statistics 
4.1. Mean $ow properties 

Several mean flow properties obtained from simulations and measurements are listed 
in table 1. The results reported by KMM for their channel flow are given for 
comparison in the last column. Several quantities listed in this table are defined as 
follows. U,  is the mean (or bulk) velocity given by 

U, xR' = 27c 1 ru,(r) dr. (3) 

Some characteristics of the mean velocity profile are expressed by the following 
lengthscales: the displacement thickness 6*, which is defined as 

and the momentum thickness 8" which is defined similarly to S*: 

with U, the centreline velocity. These two formulae are somewhat different from their 
usual definitions because of the cylindrical coordinate system (Eggels 1994). 

The numerical and experimental pipe flow results in table 1 agree to within a few 
percent. Blasius' law C, = 0.079 Re-0.25 (Re must be based on pipe diameter and mean 
velocity) is used to determine the skin friction coefficient of turbulent pipe flow. The 
values of C, = ~ ~ / i p C $  computed from the DNS data equal 9 . 2 2 ~  and 
9.21 x respectively which is indeed in excellent agreement with Blasius' value of 
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FIGURE 2. Axial mean velocity normalized by the centreline velocity Uc as function of the distance 
from the centreline. 

DNS(E) 

6950 
5300 
360 

19.31 
14.73 
1.31 

9.22 x 10- a 
0.127 
0.068 
1.86 
8.91 

DNS(U) 

6950 
5300 
360 

19.29 
14.74 
1.31 

0.126 
0.068 
1.85 
8.85 

9.21 x 

PIV 

7100 
5450 
366 

19.38 
14.88 
1.30 

0.124 
0.068 
1.83 
8.78 

9.03 x 10-3 

LDA 

7200 
5450 
371 

19.39 
14.68 
1.32 

0.130 
0.071 
1.83 
8.79 

9.28 x 10-3 

HWA 

7350 
5600 
379 

19.40 
14.76 
1.31 

0.128 
0.070 
1.82 
8.73 

9.18 x 

KMM 

6600 
5600 
360 

18.20 
15.63 
1.16 

0.141 
0.087 
1.62 
6.97 

8.18 x 

TABLE 1. Mean flow properties obtained from numerical simulations and experiments. The results 
obtained by Kim et al. (1987) for turbulent channel flow are shown in the last column (KMM). The 
various parameters are defined as follows : Uc is the centreline velocity, U, the mean velocity, u, the 
wall shear stress velocity, D the pipe diameter or full channel width, v the kinematic viscosity, Cf the 
friction coefficient, 7 ,  the wall shear stress equal to pu:, S* and 8* the displacement and momentum 
thicknesses, R the pipe radius or channel half-width and H the shape factor. The parameter G in the 
last row is defined as G = Uc/uT((H- l)/H). 

9.26 x for Re = 5300. From table 1, it follows that the mean flow properties 
obtained from axisymmetric pipe flow and plane channel flow clearly differ. In 
particular, the ratio ub/u, is larger in channel flow than in pipe flow which causes 
C, to be smaller. Furthermore, the ratio UJUb obtained from the pipe flow results 
exceeds the corresponding value in the channel flow. It is interesting to note that the 
present pipe flow results agree extremely well with the recent DNS results of turbulent 
flow in a square duct by Gdvrilakis (1992). Despite the fact that the square duct flow 
shows a secondary flow pattern (hence, the flow is homogeneous in the streamwise 
direction only), the overall mean flow properties are in very close agreement with the 
present results (Gavrilakis reports U J U ,  = 1.33, Ub/uT = 14.7 and C, = 9.26 x 
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FIGURE 3. Residual mean velocity normalized by the centreline velocity U, as function of the distance 
from the centreline. These residuals are computed with respect to the DNS(E) data. The error bars 
shown for the measurements indicate the 95 % reliability intervals computed from the experimental 
data. For symbols see figure 2.  

This illustrates that the additional wall friction at the ‘side’-walls of the pipe and the 
square duct causes the mean flow properties to be different from those obtained for 
plane channel flow. 

The mean velocity profile normalized by the centreline velocity is shown in figure 2. 
The numerical and experimental results coincide for all r / D .  The DNS(U) profile is not 
visible here because it completely collapses onto the DNS(E) profile. To magnify the 
deviations between the numerical simulations and the experiments, the residual 
velocities with respect to the DNS(E) data are plotted in figure 3. These residual 
velocities are also normalized by the corresponding centreline velocity and show only 
small deviations (IAUJUJ < 0.02). For the experimental results, the 95 % reliability 
intervals shown by the error bars are estimated at three radial positions ( r / D  M 0,0.25 
and 0.45). The numerical and experimental results do not differ significantly according 
to these 95 YO reliability intervals. The DNS results also show minor deviations in the 
near-wall region. These deviations could be attributed to the (shifted) sampling 
intervals with finite lengths of 4t*, with t* defined as D/u,. We have plotted the bulk 
velocity and wall shear stress as function of time and observed low-frequency 
oscillations (not shown here). In particular, the bulk velocity U, showed a nearly 
sinusoidal behaviour with a characteristic timescale approximately equal to 6t* 
(amplitude of order 0.1~~) .  The sampling interval of 4t* is rather short compared to this 
timescale. As a result, low-frequency oscillations appearing as the deviations observed 
in figure 3, are not completely removed from the mean velocity profiles. 

The mean velocity sealed on inner variables is shown in figure 4(a, bj. The viscous 
sublayer is well resolved in the numerical simulations, yielding the linear velocity 
distribution U: = y+ for y+ < 5. At larger distances from the wall (y’ > 30), the 
logarithmic velocity distribution with ‘ universal ’ constants (von KBrmBn’s constant 
K = 0.4 and the additive constant C = 5.5, which is somewhat larger than the universal 
value 5.0 to compensate for low-Reynolds number effects; see KMM) is not followed 
either in the numerical simulations or the experiments, as shown in figure 4(a). In 
contrast, the DNS results of KMM exhibit a good agreement with the logarithmic 
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FIGURE 4. Axial mean velocity scaled on inner variables : (a) the present numerical and experimental 
data, (b)  a comparison of the present DNS data to the DNS data obtained by KMM for their DNS 
of turbulent channel flow. The thin solid lines represent the universal velocity distributions. 

velocity distribution for y+ > 30. Figure 4(b) thus confirms the observations by Pate1 
& Head (1969) who demonstrated that the flow in a pipe fails to conform to the 
accepted law of the wall even at Reynolds numbers considerably above 3000, in 
contrast to plane channel flow. Only for Reynolds numbers (much) larger than the 
present one does turbulent pipe flow exhibit a logarithmic velocity distribution, at least 
over a part of the cross-section (see e.g. Laufer 1954 and Lawn 1971). A best-fit of 
the logarithmic velocity distribution to the DNS(E) pipe flow data is given by u,’ = 
2.861ny++4.8 with the best-fit von Kirmgn constant K’ = 0.35 and additive constant 
C’ = 4.8. This value of the von Kinnan constant is estimated from figure 5 where a 
logarithmic velocity distribution should be identified with a constant value of the 
velocity gradient shown here (see also Spalart 1988). The value of C’ is obtained by 
substituting the velocity at y+ M 60 into the logarithmic distribution for the given value 
of the von Karmin constant. For the DNS(E) pipe flow data considered here, both K 
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and C differ from the ‘universal’ values 0.4 and 5.5 respectively (from the KMM data, 
we obtain K = 0.40 and C = 5.4 which is close to these values). The parameter plotted 
in figure 5 is sensitive to small variations of the velocity gradient, especially at large 
values of y’. From figures 4(a) and 4(b), the deviations between the numerical 
simulations appeared to be small but once plotted in this way, the deviations are 
strongly magnified. From the DNS(U) data, we obtain K’ = 0.38 and C’ = 5.6 if only 
the local minimum at y+ M 50 in figure 5 is considered. These values differ from the 
DNS(E) results for which we obtained 0.35 and 4.8 respectively. On average (40 < 
y+ < 120), however, the best-fit values of von Karman’s constant in both pipe flow 
simulations agree fairly well and clearly differ from the value found in plane channel 
flow. 

At first glance, the present results appear to contradict the conclusions by Huffman 
& Bradshaw (1972) who obtained a quite constant value for K, independent of 
transverse curvature effects. The latter effects are only accounted for in the constant C. 
However, one should ask whether the existence of a logarithmic velocity distribution 
is realistic for these low-Reynolds-number flows. Theoretically, the logarithmic 
velocity distribution is only justified at large Reynolds numbers in that part of the flow 
where y+ 2 30 and y / D  < 0.1 hold simultaneously (Tennekes & Lumley 1972, chap. 5).  
The Reynolds number for which a logarithmic velocity distribution might be observed 
thus appears to be limited at the low end where y+ = 30 and, at the same time, y / D  = 
0.1. This corresponds to Re, = 300. In the present study Re, = 360, which implies 
that at this low Reynolds number there is no firm theoretical base for the existence of 
a logarithmic velocity distribution with ‘universal’ constants. In view of these 
considerations, it remains somewhat surprising that the logarithmic velocity 
distribution is followed almost up to the centreline in the plane channel flow. 

Admittedly, the present study would have been more complete if we had also 
performed DNS of plane channel flow using our finite volume approach and had 
confirmed the existence of the logarithmic velocity distribution in such a flow. Then, 
the deviations between the present DNS results and those of KMM could have been 
fully attributed to the different flow geometry rather than possibly being influenced by 
different numerics (see also 92.2). Unfortunately, we have not performed such a DNS. 
Nevertheless, in view of the following two arguments, the deviations between our DNS 
of pipe flow and the KMM channel flow data are most likely due to a different 
geometry rather than to different numerics: (a) the present DNS results are in excellent 
agreement with the various experimental data (see figures 3 and 4 4 ,  (b) Kristoffersen 
& Anderson (1993) did perform DNS of plane channel flow using a finite 
difference/finite volume approach and obtained excellent agreement with the 
logarithmic law of the wall, i.e. they showed that the same velocity distribution as 
found by KMM is obtained using the finite volume method. 

4.2. Two-point velocity correlations and spectra 

The two-point correlation coefficients of the fluctuating velocities obtained from the 
DNS(E) data are shown in figure 6(a-d) for various radial positions as functions of the 
streamwise separation z / D .  To justify the adequacy of the length L = 5D of the 
computational domain, the velocity fluctuations at a streamwise separation of half the 
pipe length should be uncorrelated. From figure 6 ( a d ) ,  it appears that all two-point 
velocity correlation coefficients are negligibly small for z / D  = 2.5 except for the 
streamwise velocity component near the wall (figures 6 c  and 6 4 .  Here, the correlation 
coefficients remain rather large at approximately 0.08. Streamwise elongated flow 
structures are present in the near-wall region which cause the correlations to be non- 
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FIGURE 5. Dimensionless velocity gradient us. the distance from the wall in wall units. 

zero. These structures presumably consist of the so-called low-speed streaks which are 
very persistent and show long streamwise extents up to 1000 viscous wall units and 
transverse extents of typically 100 wall units. With the domain length L equal to 1800 
wall units, it becomes clear that these low-speed streaks are a possible cause of the 
velocity correlations being non-zero. Although we have not yet investigated how the 
imposed domain length L = 5D might affect other statistical results, we expect that the 
influence on the statistics will only be of minor importance. In the KMM channel flow 
simulation, the two-point correlation coefficients of the streamwise velocity fluctuations 
decay faster than in the pipe and reach zero at x / 6  = 4 or, in terms of the present 
variables, at z / D  = 2. 

The smooth variations that appear in the velocity correlations shown in figure 6(a) 
are caused by the data accumulation procedure used and should be considered as 
statistical errors. The correlation functions are computed using time averaging and 
spatial averaging in the homogeneous streamwise and circumferential directions, but 
close to the centreline the velocity fluctuations in the circumferential direction become 
strongly correlated because of small separation distances. As a result, spatial averaging 
in the circumferential direction does not contribute much to stable mean values. Near 
the centreline of the pipe, the statistics for u, and u, are equal because of geometrical 
considerations. 

One-dimensional wavenumber spectra of the fluctuating velocities are computed and 
shown in figure 7 (a-e). The experimental and numerical spectra are normalized 
independently by the corresponding r.m.s. velocities and plotted at three radial 
positions ( r / D  w 0, r / D  FS 0.25 and r / D  w 0.45) in figure 7 ( a c ) .  The PIV and DNS(E) 
results show good agreement within the wavenumber range from 5 to 50, except for the 
axial velocity fluctuations near the wall (figure 7 b, solid line). This discrepancy is most 
likely related to the somewhat short domain length L = 5D for which the correlation 
coefficient was already non-zero at z / D  = 2.5 (figure 6c) .  At wavenumbers k,D > 50, 
the PIV signal is obscured by noise, yielding a nearly constant energy level for all 
wavenumbers (see also Westerweel et al. 1993). In figure 7(c), the spectra for the axial 
velocity fluctuations are shown, obtained from DNS(E) and HWA. The agreement is 
similar as observed for the PIV data. The HWA data are also obscured by noise but 
at larger wavenumbers (k,D > 70). The noise level in the HWA data is almost an order 
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FIGURE 6(a-d). For caption see facing page. 
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of magnitude less than in the PIV data. The HWA spectra are obtained from time series 
whereas line series are used for the DNS(E) and PIV spectra. For the conversion of the 
time series into line series, the local mean velocity in the streamwise direction is used 
as the convection velocity. The close agreement between all spectra shows that Taylor’s 
frozen field hypothesis is correct for the flow conditions considered here. In figures 7 ( d )  
and 7 (e), the normalized spectra computed from the DNS(U) data are compared to the 
corresponding spectra obtained from the plane channel flow DNS by Gilbert & Kleiser 
(1991). As in the DNS by KMM, Gilbert & Kleiser adopt the spectral approach. 
Within the near-wall region shown in these figures, the spectra in the streamwise (figure 
7 d )  and circumferential (figure 7 e )  directions indicate a close similarity between pipe 
and channel flow. 

4.3. TurbulenceJlow intensities 
The root-mean-square (r.m.s.) values of the fluctuating velocities, normalized by the 
friction velocity, are shown in figure 8(a) and compared to the experimental data. 
From the LDA and HWA measurements only the streamwise velocity fluctuations are 
obtained ; the PIV measurements also provide information on the normal-to-the-wall 
velocity fluctuations. The available experimental data are in excellent agreement with 
the DNS results, especially the LDA data. Despite the fact that PIV is better suited to 
study instantaneous flow structures than to generate flow statistics (see Westerweel et 
al. 1993 and Eggels et al. 1993), the PIV results agree well with the numerical and other 
experimental results. Close to the wall (r /D > 0.4) the PIV data are obscured by noise 
at small scales (see also $4.2) and hence larger r.m.s. velocities are obtained. 
Furthermore, the PIV measurements yield a larger streamwise r.m.s. velocity at 
r / D  - 0.1, which should be regarded as a statistical error. The way in which the PIV 
velocity data are acquired differs from the (one-point) LDA and HWA measurements. 
In addition to time averaging, line averaging in the homogeneous streamwise direction 
is also applied (as in DNS). The observed smooth variations of the PIV profiles may 
appear as a result of the applied data acquisition (for details, we refer to Westerweel 
1993). These variations are even more clearly observed in the profile of the Reynolds 
shear stress shown later on. 

In figure 8(b), the present DNS results are compared to those obtained by KMM. 
The streamwise r.m.s. velocity in the channel flow appears to be slightly lower than in 
the pipe flow but remains within the scatter of the measurements (see also figure 8 a). 
This smaller r.m.s. velocity is illustrated by the value of maximum r.m.s. velocity 
equal to 2.73 at y+  = 14.1 in the pipe flow whereas we obtain 2.63 at y+ = 14.6 from 
KMM’s channel flow data. More details on extreme values of second- and higher-order 
moments of the fluctuating velocities are listed in table 2. The spanwise r.m.s. velocity 
appears to be little larger at 0.25 < r/D < 0.45 in the channel than in the pipe. In 
general, the differences between pipe and channel flow are small indicating that the 
r.m.s. velocities are much less affected by the different flow geometry than the mean 
velocity and mean flow properties. 

In figure 9 the residual streamwise r.m.s. velocities normalized by u,, and calculated 
in a similar way as the residual mean velocities shown in figure 3 are presented. The 
LDA and HWA measurements show small residuals (lAu~,rmsl < 0.1) for r / D  up to 0.4. 
Close to the wall the HWA residuals become mainly negative. The smooth variation 
of the PIV profile is more clearly observed now. The residual r.m.s. velocities are small 

FIGURE 6. Two-point correlation coefficients of the three fluctuating velocity components computed 
from the DNS(E) data as functions of the streamwise separation distance z / D :  (a) r / D  = 0.008, 
y+ = 177.2; (b) r / D  = 0.247, y+ = 90.9; (c) r / D  = 0.451, y+ = 17.8; ( d )  r / D  = 0.487, y+ = 4.7. 

1-2 



192 J. G. M. Eggels and others 

lo-' 

10 -*  

10-3 

10-4 

lo-' 

10-2 

10-3 

10-4 

2 10 20 100 200 
kzD 

FIGURE 7(u-c). For caption see facing page. 
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FIGURE 7.One-dimensional wavenumber spectra of the fluctuating velocities: (a) and (b) comparison 
between the spectra obtained from DNS(E) and PIV for the radial and axial velocity component; (c)  
comparison between the spectra obtained from DNS(E) and HWA for the axial velocity component; 
(d) and (e) comparison between the pipe flow spectra from DNS(U) (solid lines) and the channel flow 
spectra from Gilbert & Kleiser (199 1) (dashed lines) as functions of the streamwise and circumferential 
wavenumbers for all three velocity components. 

and the numerical and experimental results agree to within the 95 % reliability intervals 
computed for the experimental data. The deviations between DNS(E) and DNS(U) are 
also small, especially near the wall. 

In figure 10(a, 6) the r.m.s. velocities are normalized by the local mean velocity and 
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DNS(E) 
- 

Value Y+ 
0.832 60.0 
1.025 44.1 
2.731 14.1 
0.710 32.8 

-0.62 6.6 
1.16 0.94 

18.9 1.88 
8.4 0.94 
2.16 14.1 
5.6 0.94 

DNS(U) 
- 

Value Y'  
0.851 58.1 
1.03 1 45.9 
2.721 14.1 
0.729 32.8 

- 0.62 8.4 
1.07 0.94 

17.3 1.88 
7.9 0.94 
2.17 14. I 
5.1 0.94 

DNS(KMM) 

Value Yt 
0.836 55.9 
1.085 38.1 
2.628 14.6 
0.708 32.8 

-0.24 13.3 
0.94 1.02 

0 
0 

11.0 2.15 
4.1 0 

O(7) 

TABLE 2.  Several extreme values with the corresponding radial locations of second- and higher-order 
statistics of the fluctuating velocities. The extreme values of the skewness (S) and flatness ( F )  factors 
near the pipe wall are reported at the first location near the wall and have not been extrapolated to 
the wall where y+ = 0. 

plotted only in the near-wall region. The numerical and experimental results show an 
excellent agreement. The deviations between pipe and channel flow are negligibly small 
for the streamwise r.m.s. velocity, as shown in figure lO(b). As mentioned before in 
$2.2, Rai & Moin (1989) repeated the DNS of KMM using finite difference schemes 
instead of the spectral method. For the central difference scheme, they ended up with 
a streamwise r.m.s. velocity normalized on the local mean velocity equal to 0.46 at the 
wall, i.e. clearly different from the 0.36 obtained by KMM and also found here for the 
pipe flow. They attributed this unsatisfactory result to the central difference scheme. In 
view of the present results obtained with a similar numerical technique, their 
unsatisfactory results are most likely caused by the coarse numerical resolution rather 
than by the application of the central difference scheme itself. 

Figure 11 shows the r.m.s. distribution of the pressure fluctuations normalized by 
pu," along the radial direction. A minimum value at the centreline equal to 0.89 is found 
whereas KMM reported a minimum value equal to 0.77. A maximum value of 1.83 is 
obtained in the pipe flow simulations at y' z 30. Close to the wall the root-mean- 
square value of the pressure fluctuations approaches 1.58 which is in fair agreement 
with the results of KMM who reported 1.75 at y+ o 30 and 1.5 at the wall. Apparently, 
the pressure fluctuations are rather insensitive to wall curvature as far as the near-wall 
region is considered. Near the centreline, the pressure fluctuations in the pipe flow are 
approximately 16% larger than those observed in the plane channel flow. When 
comparing the r.m.s. values of the pressure fluctuations at the wall with experiments, 
it appears that the simulations provide rather low values. Schewe (1983), and more 
recently Lofdahl et al. (1993), report P,,,/q, of order 0.01 with q, the dynamic 
pressure of the free stream. Re-scaling with pu," gives P,,, equal to 2.6 which is almost 
a factor 2 larger than the DNS results. Experiments indicate that the size of the 
transducer can be of significant importance where the r.m.s. value decreases (up to a 
factor 2) with increasing transducer size (Schewe, 1983 ; figure 11). Beside a possible 
Reynolds-number effect (see KMM, end of 4 4 4 ,  it is not unlikely that the low r.m.s. 
values obtained from DNS are caused by too coarse a spatial resolution in the 
streamwise and circumferential directions. 
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FIGURE 8. Root-mean-square (r.m.s.) velocities normalized by the wall friction velocity u, as function 
of the distance from the centreline: (a) the present numerical and experimental data, (b)  a comparison 
of the present DNS data with the DNS data obtained by KMM for their DNS of turbulent channel 
flow. The error bars shown for the measurements indicate the 95 % reliability intervals computed 
from the experimental data. 

4.4. Reynolds shear stress 
The Reynolds shear stress and total shear stress are shown in figure 12(a). Since the 
pipe flow is fully developed and in a statistically steady state, the total shear stress must 
be linear, which is indeed the case. This linear total shear stress distribution is 
independent of whether pipe or channel flow is considered because in both cases the 
normal-to-the-wall gradient of the total shear stress must balance the imposed (fixed) 
pressure gradient. In the core region of the flow, the viscous shear stresses are small and 
hence the Reynolds shear stresses in the pipe and channel are similar. Towards the wall, 
the viscous shear stress becomes important. Deviations in the mean velocity gradient 
in pipe and channel flow and hence in the viscous shear stress, should induce different 
Reynolds shear stresses. From figure 12(b) it becomes clear that the Reynolds shear 
stresses in pipe and channel differ slightly, but that the observed differences are small. 
As mentioned above, the smooth variations in the PIV shear stress profile may result 
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FIGURE 9. Residual axial r.m.s. velocity normalized by the wall friction velocity u, as function of the 
distance from the centreline. The residuals are computed with respect to the DNS(E) data. Symbols 
as in figure 8. 

from the data acquisition procedure used, in combination with a rather limited sample 
size. 

4.5. Higher-order statistics 
The skewness and flatness factors, S and F respectively, are shown in figures 13 (a-c) 
and 14(a-c). Here, the differences between pipe and channel flow appear to be 
somewhat larger than before. The skewness factor of the normal-to-the-wall velocity 
fluctuations (figure 13a) in the channel flow simulation by KMM becomes zero twice 
at y+ % 6 and y+ ;5: 30. In contrast, the pipe flow simulations only show one crossover 
at y+ 45. Near the wall, the skewness factor in the pipe is smaller than in the channel 
(minimum value approximately -0.6 us. -0.2 in the channel). From its definition, it 
follows that the skewness factor is related to a normal-to-the-wall energy flux by radial 
velocity fluctuations. In the pipe flow, this energy flux is negative (S < 0) for all y+ < 
45 which means that energy is transported towards the pipe wall. In the channel flow, 
the energy flux changes sign at y+ = 6 and hence energy is transported away from the 
wall. The latter energy transport requires an energy source or energy supply by other 
processes near the channel wall. We will return to this point in $5  where the energy 
budgets are presented. 

One could attribute the observed deviations to a different flow geometry, but some 
care is required. Anderson & Kristoffersen (1992), from their DNS of turbulent 
channel flow, found behaviour of the skewness factor similar to that found in the 
present study with only one crossover at y+ ;5: 40 but with a larger negative minimum 
close to - 1.7. The agreement of their numerical results with the experiments is not 
good in the near-wall region (the experimental data used for comparison in their paper 
closely resemble the results obtained by KMM shown in figure 13a). The agreement 
between the present DNS and PIV results is also not very good, but still reasonable 
taking into account that the PIV data are obscured by noise close to the wall and hence 
provide a smaller skewness factor. Detailed experimental investigations focused on the 
near-wall region should be carried out in the future to clarify the discrepancies 
observed for the skewness factor. Further numerical investigations should consider the 
possible influence of streamwise and circumferential gridspacing near the wall before 
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region : (a) the present numerical and experimental results, (b)  the present numerical results compared 
to the channel flow data of KMM. Symbols as in figure 8. 
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FIGURE 11. Normalized r.m.s. of the pressure fluctuations as a function of the distance from the 
centreline. 
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FIGURE 12. Reynolds shear stress and total shear stress distributions, normalized by the shear stress 
at the wall, as function of r / D  : (a) the present numerical and experimental results, (b) a comparison 
of the Reynolds shear stress in pipe and channel (for plotting purposes, the sign of the shear stress 
in the channel flow has been inverted). 

the observed deviations between pipe and channel flow DNS can be attributed to the 
different flow geometry. 

On the other hand, the skewness factor of the streamwise velocity fluctuations only 
shows minor deviations between the present and the KMM results (figure 13b). Here, 
the tendency observed in pipe and channel flow is similar, with a positive skewness near 
the wall (y' < 10) and a negative skewness factor approaching -0.5 for y+ > 30; the 
crossover in the channel flow occurs closer to the wall ( y+  = 10) than the pipe flow 
(y' = 13). The numerical and experimental results agree reasonably well except for the 
PIV measurements at y+ > 80. Because of symmetry, the skewness factor of uk should 
equal zero. From figure 13 (c) it follows that the sample size used here is only marginal 
since the skewness factor shows some small oscillations and does not equal zero for all 

In contrast to the skewness factor, the flatness factor of u: shows the same tendency 
in channel and pipe flow (figure 14a). The strong increase of the flatness factor up to 
20 near the wall is also found in the pipe flow. Anderson & Kristoffersen (1992) even 
obtained a flatness factor close to 35 at the wall. The corresponding experimental data 

Y+. 



Fully developed turbulent pipe $ow 199 

1.5 1 
0 PIV - 
0 HWA ------ '  1 .a 

0.5 

S(UJ 
0 

-0.5 

-1.0 J 

-0.5 1 
100 

-1.0 c 
0 20 40 60 80 

Y' 
FIGURE 13. Skewness factors of the velocity fluctuations in the near-wall region: (a) the normal-to- 
the-wall velocity component, (b) the streamwise velocity component, and (c) the circumferential 
velocity component. 

(see KMM and Andersson & Kristoffersen 1992) are questionable, showing a 
decreasing flatness factor as the wall is approached. This discrepancy between 
numerical and experimental results regarding the near-wall higher-order moments of 
the normal-to-the-wall velocity fluctuations, is discussed in detail by KMM. For 
y+  > 30, the flatness factor is only a little larger than the corresponding value for a 
Gaussian distribution for which F equals 3. 
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In figure 14(b), the flatness factor for ui shows larger deviations between pipe and 
channel. The two crossovers and the location of the minimum value all occur at larger 
y+ in the pipe than in the channel. A similar tendency is observed in the comparison 
of numerical and experimental channel flow results by KMM (figure 20a of their 
paper). Here the crossovers in the measurements also occur at larger yf than in the 
simulation. The present DNS data obviously agree well with the experimental data 
obtained from channel flow. The local minimum flatness factors in pipe and channel 
flow both equal approximately 2.16 (see also table 2). Near the wall (y' -= lo), the 
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intermittency of the streamwise velocity fluctuations is larger in the pipe flow as shown 
by the larger flatness factor (5.6 and 5.1 in DNS(E) and DNS(U) respectively compared 
to 4.1 in the channel flow). A similar behaviour is found for the flatness factor of the 
circumferential velocity fluctuations (figure 14c) which is also larger in the pipe than 
in the channel for y+ < 50. This result is likely to be related to the altered ‘splatting’ 
effect in the pipe because of transverse curvature, as explained in $5 .  

The overall agreement between numerical and experimental third- and fourth-order 
statistics is reasonable. It should, however, be mentioned that these higher-order 
statistics are more difficult to obtain with high reliability than for example the second- 
order statistics because of the large sample size required. In particular, in the PIV 
measurements the sample size is rather small and hence the higher-order statistics 
cannot be estimated very accurately. Nevertheless, the PIV results show a reasonable 
agreement with the DNS and HWA data. 

5. Energy balances of the Reynolds stress components 
One main advantage of the DNS is the possibility to compute the various terms in 

the balance equations for the Reynolds-stress components explicitly. In order to obtain 
these transport equations in cylindrical coordinates we start from the balance 
equations in general tensor notation, which are obtained from the corresponding 
formulation of the Navier-Stokes equations, see Moser & Moin (1984) and Bradshaw 
(1973). The present flow is homogeneous in the axial and circumferential directions. U, 
is the only non-zero mean velocity and all derivatives of mean quantities in the 
circumferential and axial directions vanish. With these simplifications, the budgets for 
the remaining elements of the Reynolds-stress tensor and the turbulent kinetic energy 
k = $<u:2+g+a are as follows: 

uF-budge t 
- 

PR PS 

-_ 1 d(ru; u:) + J- [ 12 ( r  F)] ; (6)  
r ?r Re r a r  
Id ‘  .- J 

TD VD 
- 

ui2-budget 

PS DS 
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FIGURE 15. Terms in the Reynolds-stress budgets of the fluctuating velocity components in wall 
coordinates : (a) the streamwise velocity component, (b) the circumferential velocity component and 
(c) the normal-to-the-wall velocity component. The symbols denote the corresponding terms for the 
channel flow data reported by Mansour et al. (1988). The pipe flow budgets are computed from the 
DNS(U) data. 
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Terms on the right-hand sides of (6)-( 10) have the following meaning : production 
PR, pressure strain PS, dissipation DS, turbulent diffusion TD, pressure diffusion PD 
and viscous diffusion VD. The two pressure terms can be combined to form the 
velocity-pressure gradient term VPG. Other ways of splitting the VPG term are 
discussed by Mansour, Kim & Moin (1988). 

Figure 15(a-c) shows the budgets computed from the DNS(U) data for the 
turbulence intensities, and figures 18 and 19 those for the Reynolds shear stress and the 
turbulent kinetic energy in local wall coordinates. The range of the non-dimen- 
sionalized wall distance is 0 < y+ < 162. In terms of radial distance, this corresponds 
to the range 0.5 3 r / D  2 0.05. In the region close to the pipe axis (162 d y+ d 180) it 
is difficult to calculate all terms in the budgets correctly because of the singularity at 
the pipe centreline (terms involving l / r  become extremely dominant near the 
centreline). All terms plotted are scaled by u,”/D. In addition, the balance difference is 
drawn. The results are compared to the DNS channel flow data of KMM reported by 
Mansour et al. (1988). 

The plots of the three turbulence intensities show the typical characteristics of these 
components. The c-budget  is largely dominated by production and dissipation away 
from the wall. While the turbulent diffusion term becomes positive at about y+ = 10, 
the viscous diffusion changes sign at y+ = 5 .  At the wall the dissipation rate balances 
the viscous diffusion rate. The pressurestrain term which equals the velocity-pressure 
gradient term is negative over the whole pipe radius. This term takes away energy from 
the axial component and redistributes it among the other two components. Obviously, 
in the near-wall region transverse curvature effects are small in the five balance terms 
of figure 15(u). However, the PS,, term (plotted in figure 16) is altered slightly close to 
the wall compared to the channel flow, which seems to result from an alteration of the 
splatting effect due to transverse curvature (see below). 

The q-balance reveals an equilibrium between dissipation and the velocity-pressure 
gradient term away from the wall. As in channel flow, the turbulent transport term 
remains small with respect to the other terms. Very close to the wall viscous diffusion 
becomes the dominant source term. At the wall itself, it balances the dissipation rate. 
The VPG term is slightly affected by transverse curvature in the vicinity of the wall. 



204 J.  G .  M .  Eggels and others 

20 

c 
.2 10 
0 

0 

v1 

;; --lo 
4 

-20 

... I ,  

; '. 

so 100 150 

Y' 
FIGURE 16. Splitting of the velocity-pressure-gradient term (VPG) into the pressure-strain (PS) and 
the pressure-diffusion (PD) terms. The symbols mark the corresponding terms for the channel flow 
data reported by Mansour et al. (1988). 

In the q-budget there is also no production term, thus the dissipation and the 
velocity-pressure gradient term are again the dominant ones. Viscous diffusion has a 
smaller influence here than for the other two Reynolds-stress components. The PS and 
PD terms in this budget are directly affected by transverse curvature close to the wall 
through the splatting effect explained by Mansour et al. (1988). This effect is connected 
with sweep events which carry high-speed fluid to the wall and thus produce a flow 
pattern similar to that of a jet impinging upon a wall with a net energy transfer to the 
circumferential and longitudinal components (splatting). Contour lines of a snapshot 
of the longitudinal velocity fluctuations in figure 17 give an impression of sweep and 
ejection events. The mushroom-like structures close to the wall drawn as solid lines 
correspond to high-speed fluid. Now, owing to transverse curvature of the wall the 
spreading of fluid in the circumferential direction is inhibited. This phenomenon is 
reflected in the magnitudes of PS,, and PD,, in the immediate wall vicinity. A 
comparison between pipe and channel flow in figure 16 reveals smaller values of both 
terms close to the pipe wall. Also, further away from the wall (y+ x 20) the PS,, and 
PD,, terms in the pipe and channel differ. In the budget f o r e ,  however, PS,, and PD,, 
terms do not appear individually but together, which means that their sum (the VPG 
term) is important. From figure 15(c), it appears that, like the two individual 
contributions, the VPG term differs in pipe and channel flow. Alteration of this gain 
term induces changes of the TD and DS terms to satisfy the proper balance. As a result, 
the triple correlations of the radial velocity fluctuations (see figure 13a), which are 
associated with the TD term, show deviations from the channel data. 

In figure 16, the velocity-pressure gradient terms are split into pressure-diffusion 
and pressurestrain terms to confirm the physical interpretation of the latter. No 
pressure-diffusion term exists in the q-budget; this term is only important in the Q- 
budget close to the wall. As expected, in the fully turbulent region the pressure-strain 
term redistributes energy from the axial into the circumferential and the radial 
components. Therefore the sum of all pressurestrain terms vanishes. In the 7- and 
the $-budgets the pressure-strain terms are the most important source terms. Only 
near the wall where y+ < 14 does the pressure-strain term in the p-budget become 
negative whereas the pressure4iffusion term becomes positive and of comparable 
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FIGURE 17. Contour lines of the fluctuating axial velocity component in a cylindrical cross-section of 
the flow. Positive contours are shown as solid lines and negative contours are dashed. The minimum 
value is -6.211, the maximum is 6.183 and the increment is 0.6523. 

FIGURE 18. Terms in the energy budget of the Reynolds shear stress (for details, see the caption 
of figure 15). 

magnitude to the pressure-strain term (the VPG term is close to zero). In this region 
the PS,, @m is the dominant sink term and redistributes energy from the z-budget 
into the ui2-budget. This is due to the ‘splatting’ or ‘impingement’ effect, explained 
above. 

Figure 18 shows the budget for the Reynolds shear stress. It is dominated by the 
production and the velocity-pressure gradient term. Away from the wall, VPG 
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FIGURE 19. Terms in the energy budget of the turbulent kinetic energy 
(for details, see the caption of figure 15). 

balances PR while the other terms are small. In the wall layer T D  becomes important. 
In between the viscous sublayer and the buffer layer, the VD and DS terms reach 
extreme absolute values. The sum of both terms, however, is small in the whole flow 
field, which means that viscosity has practically no influence on this quantity. The 
observed deviations between the pipe and channel flow budgets are most likely caused 
by implicit curvature effects via the radial velocity fluctuations. Despite the deviations 
in the budgets, the Reynolds shear stress in the pipe and channel are in very close 
agreement (figure 12 b). 

In figure 19 the results for the three turbulencc intensities are summed up in the 
budget for the turbulent kinetic energy. Comparing the magnitude of the terms of the 
three components it is obvious that the k-budget is very simular to the q-budget.  The 
pressure-velocity gradient term consists only of the pressure diffusion term and is of 
minor importance. There are great similarities in the k-budgets of pipe and channel 
flow. Only the turbulent diffusion term reflects minor effects of transverse curvature in 
the radial transport of kinetic energy away from the wall. 

6. Summary and conclusions 
Direct numerical simulations and experiments have been carried out to study fully 

developed turbulent pipe flow at a Reynolds numbcr of Re, M 7000 based on centreline 
velocity and pipe diameter. The flow statistics obtained from two different numerical 
codes and three different measurement techniques (hot-wire anemometry (HWA), laser 
Doppler anemometry (LDA) and particle image velocimetry (PIV)) are compared and 
a good agreement between direct numerical simulation and experiment is obtained. 
This good agreement of statistical results demonstrates that the present numerical 
codes based on the finite volume technique in cylindrical coordinates, provide realistic 
turbulent flow statistics. 

To investigate the differences between fully developed flow in an axisymmetric pipe 
and a plane channel geometry, the present numerical results are compared with the 
statistical results of Kim et al. (1987) (KMM). To avoid any Reynolds-number effects, 
the Reynolds number used in our study exactly matches the Reynolds number 
employed by KMM. Previous studies on the dill'erences between axisymmetric and 
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plane channel flow only considered the mean velocities and not the statistics on velocity 
fluctuations. Pate1 & Head (1 969) have already reported observed differences in mean 
velocity profiles obtained from fully developed turbulent channel and pipe flow 
measurements. They demonstrated that the flow in a pipe fails to conform to the 
accepted law of the wall even at Reynolds numbers considerably above 3000, in 
contrast to channel flows. The results of the present study indeed confirm their 
observations. Whereas the channel flow data follow the logarithmic velocity 
distribution up to the channel centreline, the numerical and experimental pipe flow 
data significantly exceed this logarithmic velocity distribution for y+ > 30. In the centre 
region of the flow (y' > 50), the mean velocities in the pipe and channel deviate by up 
to 1.224,. The deviations between experimental and numerical pipe flow results are 
much smaller (< 0.4u,), which confirms the difference between axisymmetric and plane 
channel flow. The differences in the mean velocity profile are also reflected in several 
parameters which are related to the mean velocity profile. The ratio Ub/u, in the plane 
geometry is about 6% larger than in the axisymmetric geometry, whereas the ratio 
UJU,  is about 12 % smaller. These changes are caused by the additional friction at the 
'side'-walls of the pipe which is absent in the plane channel. In a square duct flow, 
where there is also additional friction at the sidewalls, the ratios mentioned above are 
almost the same as for,the axisymmetric pipe geometry (deviations are approximately 
0.5 % and 1.5 YO respectively). 

The statistics on fluctuating velocities appear to be less affected by the cylindrical 
cross-section of the pipe geometry. The streamwise r.m.s. velocities in the channel are 
only slightly smaller than in the pipe whereas the spanwise r.m.s. velocities are 
somewhat larger for r / D  between 0.25 and 0.45. Typical deviations between pipe and 
channel flow are of the order of 0 . 1 ~ ~ .  The deviations between experimental and 
numerical r.m.s. velocities in the pipe are also of the order of 0. lu,. This illustrates that 
the observed differences in pipe and channel flow for the turbulence intensities are 
largely insignificant. Larger deviations are observed for the higher-order statistics of 
the fluctuating velocities. In particular, the skewness factor of the normal-to-the-wall 
velocity fluctuations differs from the results obtained in the channel. A physical 
explanation for the observed differences must start from the impingement mechanism 
at the wall which is altered by transverse curvature effects. All other higher-order 
statistics obtained from the present pipe flow simulations show a quite fair agreement 
with the results from the plane channel flow simulation. 

We also computed the energy budgets of the Reynolds-stress components. A 
comparison of these budgets with the corresponding results from the plane channel 
flow shows an excellent agreement, except for the terms involving the normal-to- 
the-wall velocity fluctuations. Here, the tendency in the budgets is similar, but the 
radial locations of local extremes and crossovers show small discrepancies. These 
discrepancies must be associated with the altered impingement mechanism at the wall. 
In particular the pressure-strain and pressure-diffusion terms in the ?-budget show 
magnitudes decreased by up to 35 '/O in the near-wall region (y' < 10) compared to the 
plane channel flow results. 
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