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A B S T R A C T

Second order upwind scheme discretization of Reynolds-averaged Navier–Stokes turbulence models may lack
robustness, especially when using unstructured grids. Among several factors that can be traced as the reasons,
preserving a monotonic solution plays a key role. A possible remedy is to smooth the variation of the
turbulence model dependent variables. To that end, a square root transformation is applied to the dependent
variables of a 𝑘-𝜔 turbulence model. The new additional source diffusion terms that emerge as a result of
the transformation are fully retained. Therefore, the transformed model reproduces the baseline 𝑘-𝜔 model
performance. Moreover, the transformed model greatly enhances the robustness and reliability of turbulent
flow simulations on unstructured grids.
1. Introduction

Despite their relatively simple mathematical representation,
Reynolds-Averaged Navier–Stokes (RANS) two-equation turbulence
models present serious numerical difficulties, including convergence
and positivity preservation. The common argument is that the con-
vergence difficulties arise mainly due to the highly non-linear source
term, having time scales that greatly differ from those of the convective
and diffusive terms. Furthermore, in the process of convergence, non
physical solutions may appear, namely, negative values of the turbu-
lence quantities, even if the analytical solution exists and is analytically
guaranteed to remain positive. The non physical solutions dramatically
deteriorate the convergence rates of the overall flow solver, requiring
several thousands of iterations to reach a desired convergence criterion.

According to the numerical analysis that was conducted by Jongen
and Marx [1], the turbulence model convective flux may cause serious
numerical difficulties. Specifically, it is the convective flux that may
generate spurious oscillations, which in turn, may result in a non
physical solution. The convective flux is a linear operator with regard
to the turbulence model working variables. However, for high-order
schemes, certain nonlinearity is introduced into the discrete approxima-
tion in an attempt to control spurious oscillations in the solution (e.g., a
limiter in the widely used MUSCL schemes, or nonlinear weights in
WENO schemes). These nonlinear terms may vary significantly between
neighboring cells due to the local nature of the turbulence model’s
source term. This may especially be dramatic in the transition phase
of the simulation through convergence where large errors and sharp
interfaces between turbulent and non-turbulent regions exist.

E-mail address: yairm@iscfdc.com.

A few previous studies have successfully utilized a high order ap-
proximation of the convective flux of linear RANS turbulence models
in structured grid-based flow solvers [2,3], and even in Reynolds stress
transport models [4,5]. However, the use of a second-order, or a
higher order accuracy for the approximation of the turbulence model
equations convective flux in an unstructured grid-based flow solver is
very rare [6,7]. Some progress was achieved by the author in designing
a robust second order scheme for the turbulence model equations using
unstructured grids [8]. It was found that a monotone discretization
of the convective flux of the turbulence model alone may have a
dramatic effect on the convergence characteristics of the governing
equations. Specifically, the limiter that is applied to the second-order
reconstruction of the turbulence model primitive variables vector plays
a key role in the convergence characteristics of the flow solver.

The aim of the present work is to propose a modified two-equation
turbulence model with a reduced sensitivity to the limiter type. The
motivation is to specifically design the turbulence model for robust
computations on unstructured grids. The main idea is to use a 𝑘-𝜔
model (where 𝑘 is the turbulent kinetic energy and 𝜔 is the specific
dissipation rate of turbulent kinetic energy), specifically the model
developed by Kok [9] (also known as the 𝑇𝑁𝑇 model) as the baseline
model. The transformed model, denoted 𝑞-𝑠, is obtained by using a
square root transformation to 𝑘 and 𝜔, namely 𝑞 =

√

𝑘 and 𝑠 =
√

𝜔.
It is expected that this transformation will reduce the numerical sensi-
tivity, especially at near-wall regions. The idea of using a square root
transformation is not new. For example, the 𝑞-𝜔 model, developed by
Coakly and Huang [10], the 𝑘-

√

𝜔 model, proposed by Jiang et al. [11],
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and the 𝑞-𝑙 model, developed by Goldberg [12], all use the square
root transformation technique. The present model mainly differs from
these models by fully retaining all of the new terms that emerge from
the transformation. Therefore, the transformed model should reproduce
the original model performance but with improved convergence and
stability characteristics.

2. Governing equations

In the present work, the flow is modeled by the compressible
Reynolds averaged Navier–Stokes equations. The Reynolds stress ten-
sor is modeled via the Boussinesq approximation using two-equation
turbulence model, i.e, the 𝑘-𝜔 or the 𝑞-𝑠 models.

.1. Mean-flow equations

In a compact vector form, the mean-flow equations may be ex-
ressed in a Cartesian coordinate system as:

𝜕𝑽
𝜕𝜏

+
𝜕(𝑭 𝑐

𝑗 − 𝑭 𝑑
𝑗 )

𝜕𝑥𝑗
= 0 (1)

where 𝜏 denotes the time and 𝑥𝑖 = [𝑥, 𝑦, 𝑧] denotes the Cartesian coor-
dinates. The vectors 𝑽 , 𝑭 𝑐

𝑗 and 𝑭 𝑑
𝑗 , represent the mean-flow dependent

variables, the inviscid flux, and the diffusive flux, respectively. These
are given as:

𝑽 =

⎡

⎢

⎢

⎢

⎣

𝜌

𝜌𝑢𝑖
𝐸

⎤

⎥

⎥

⎥

⎦

, 𝑭 𝑐
𝑗 =

⎡

⎢

⎢

⎢

⎣

𝜌𝑢𝑗
𝜌𝑢𝑗𝑢𝑖 + 𝑝𝛿𝑖𝑗
𝜌𝑢𝑗𝐻

⎤

⎥

⎥

⎥

⎦

, 𝑭 𝑑
𝑗 =

⎡

⎢

⎢

⎢

⎣

0

𝜏𝑖𝑗 +R𝑖𝑗

𝛽𝑗

⎤

⎥

⎥

⎥

⎦

(2)

where 𝜌 is the fluid density. The Cartesian velocity vector compo-
nents are denoted by 𝑢𝑖 = [𝑢, 𝑣, 𝑤], and the total energy is denoted
by 𝐸. The pressure is denoted by 𝑝 and 𝐻 = (𝐸 + 𝑝) ∕𝜌 is the to-
tal enthalpy. The quantities 𝜏𝑖𝑗 and R𝑖𝑗 are the components of the
viscous stress and Reynolds-stress tensors, respectively. Applying the
Boussinesq approximation, the Reynolds stress tensor takes the form:

R𝑖𝑗 = 2𝜇𝑡

(

𝑆𝑖𝑗 −
1
3
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗

)

− 2
3
𝜌𝑘𝛿𝑖𝑗 (3)

where 𝑘 denotes the turbulence kinetic energy, 𝛿𝑖𝑗 is the Kronecker
delta function and 𝑆𝑖𝑗 is the strain tensor:

𝑆𝑖𝑗 =
1
2

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

(4)

The terms 𝛽𝑗 are given by:

𝛽𝑗 = 𝑢
(

𝜏𝑗1 +R𝑗1
)

+ 𝑣
(

𝜏𝑗2 +R𝑗2
)

+𝑤
(

𝜏𝑗3 +R𝑗3
)

− 𝑞𝑗 −
(

𝑞𝑡
)

𝑗 (5)

where 𝑞𝑗 and 𝑞𝑡𝑗 are the molecular and turbulent heat fluxes, respec-
tively, and are modeled using Fourier’s law as:

𝑞𝑗 = −𝜅 𝜕𝑇
𝜕𝑥𝑗

(6)

𝑡𝑗 = −𝜅𝑡
𝜕𝑇
𝜕𝑥𝑗

(7)

The temperature is denoted by 𝑇 and 𝜅 = 𝑐𝑝𝜇∕𝑃𝑟 and 𝜅𝑡 = 𝑐𝑝𝜇𝑡∕𝑃𝑟𝑡
are the molecular and turbulent heat conductivity coefficients, respec-
tively. The term 𝜇 denotes the molecular viscosity, calculated using
Sutherland’s law. The term 𝜇𝑡 denotes the turbulent viscosity. The
term 𝑐𝑝 is the specific heat capacity at constant pressure, while 𝑃𝑟 =
0.72 and 𝑃𝑟𝑡 = 0.9 are the molecular and turbulent Prandtl numbers,
espectively. The mean-flow equations are closed using the equation of
tate for a perfect gas, given by:

= (𝛾 − 1)
[

𝐸 − 1
2
𝜌
(

𝑢2 + 𝑣2 +𝑤2)
]

(8)

where 𝛾 is the ratio of the specific heat
(

𝑐𝑝∕𝑐𝑣
)

, set to 𝛾 = 1.4. Note that
the contribution of the turbulent diffusion to the total energy transport
equation is neglected, as well as the contribution of the turbulent
kinetic energy to the total energy.
2

2.2. Two-equation turbulence model

The proposed model is derived from the 𝑘-𝜔 model (𝑇𝑁𝑇 model)
developed by Kok [9]. The 𝑘-𝜔 model may be presented in a compact
vector form in Cartesian coordinates as follows:

𝜕𝒗
𝜕𝜏

+
𝜕(𝒇 𝑐𝑗 − 𝒇 𝑑𝑗 )

𝜕𝑥𝑗
= 𝑺𝑘𝜔 (9)

where 𝒗 = [𝜌𝑘, 𝜌𝜔]𝑇 is the turbulence model dependent variables
vector. The turbulence model convective flux vector, 𝒇 𝑐𝑗 , and diffusive
flux vector, 𝒇 𝑑𝑗 , are given by

𝒇 𝑐𝑗 =

[

𝜌𝑘𝑢𝑗
𝜌𝜔𝑢𝑗

]

, 𝒇 𝑑𝑗 =

⎡

⎢

⎢

⎢

⎣

𝛤𝑘
𝜕𝑘
𝜕𝑥𝑗

𝛤𝜔
𝜕𝜔
𝜕𝑥𝑗

⎤

⎥

⎥

⎥

⎦

(10)

The turbulence model source vector, 𝑺𝑘𝜔, is given as:

𝑘𝜔 =

⎡

⎢

⎢

⎢

⎣

𝑃𝑘 − 𝛽𝑘𝜌𝜔𝑘

𝛼𝜔
𝜔
𝑘
𝑃𝑘 − 𝛽𝜔𝜌𝜔2 + 𝛤𝑑 max

(

𝜕𝑘
𝜕𝑥𝑖

𝜕𝜔
𝜕𝑥𝑖

, 0
)

⎤

⎥

⎥

⎥

⎦

(11)

where 𝑃𝑘, defined as 𝑃𝑘 = R𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

, represents the production of the
urbulent kinetic energy. The turbulence model diffusive coefficients,
𝑘, 𝛤𝜔, and 𝛤𝑑 , are defined as follows:

𝑘 = 𝜇 + 𝜎𝑘𝜇𝑡, 𝛤𝜔 = 𝜇 + 𝜎𝜔𝜇𝑡, 𝛤𝑑 = 𝜎𝑑
𝜌
𝜔

(12)

The constants of the model are given by:

𝛽𝑘 = 0.09, 𝜎𝑑 = 0.5, 𝛼𝜔 = 0.55316667, 𝛽𝜔 = 0.075,

𝜎𝑘 = 2∕3, 𝜎𝜔 = 0.5
(13)

Two-equation turbulence models may suffer from spurious over-
production of turbulent kinetic energy in certain regions. Although
this phenomenon is known as the stagnation point anomaly, it usually
appears in highly strained flows [13,14]. This anomaly results in the
generation of excessive, large, unrealistic values of turbulent viscosity.
The definition of unrealistic refers to values that cause the Reynolds
stress tensor to violate realizability [15]. A realizability constraint that
was developed by Mokhtarpoor and Heinz [16] was adopted as follows:

𝜇𝑡 = 𝜌𝑘min
[

1
𝜔
,
𝑐𝑅
𝛺𝑠

]

(14)

where 𝛺𝑠 =
√

2𝑆𝑖𝑗𝑆𝑖𝑗 and 𝑐𝑅 is a constant that is set to 𝑐𝑅 = 23

24
√

3
.

Note that the above realizability constraint is not a part of the original
TNT model.

2.2.1. Derivation of the 𝑞-𝑠 model
Using the following definitions, 𝑞 =

√

𝑘 and 𝑠 =
√

𝜔, the 𝑞-𝑠 model
is obtained as follows:

𝜕𝒗
𝜕𝜏

+
𝜕(𝒇 𝑐𝑗 − 𝒇 𝑑𝑗 )

𝜕𝑥𝑗
= 𝑺𝑞𝑠 (15)

where 𝒗 = [𝜌𝑞, 𝜌𝑠]𝑇 is the turbulence model dependent variables vector.
The turbulence model convective flux vector, 𝒇 𝑐𝑗 , and diffusive flux
vector, 𝒇 𝑑𝑗 , are given by

𝒇 𝑐𝑗 =

[

𝜌𝑞𝑢𝑗
𝜌𝑠𝑢𝑗

]

, 𝒇 𝑑𝑗 =

⎡

⎢

⎢

⎢

⎣

𝛤𝑘
𝜕𝑞
𝜕𝑥𝑗

𝛤𝜔
𝜕𝑠
𝜕𝑥𝑗

⎤

⎥

⎥

⎥

⎦

(16)

The turbulence model source vector, 𝑺𝑞𝑠, is given as:

𝑺𝑞𝑠 =

⎡

⎢

⎢

⎢

⎢

𝑃𝑘
2𝑞

−
𝛽𝑘
2
𝜌𝑠2𝑞 + 𝛤𝑞

𝜕𝑞
𝜕𝑥𝑖

𝜕𝑞
𝜕𝑥𝑖

𝛼𝜔 𝑠
2
𝑃𝑘 −

𝛽𝜔 𝜌𝑠3 + 𝛤𝑑 max
(

𝜕𝑞 𝜕𝑠 , 0
)

+ 𝛤𝑠
𝜕𝑠 𝜕𝑠

⎤

⎥

⎥

⎥

⎥

(17)
⎣

2 𝑞 2 𝜕𝑥𝑖 𝜕𝑥𝑖 𝜕𝑥𝑖 𝜕𝑥𝑖 ⎦
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Fig. 1. Comparison of the normalized stream-wise velocity profiles at six stations over the axisymmetric bump.
The turbulence model diffusive coefficients, 𝛤𝑘, 𝛤𝜔, and 𝛤𝑑 , are defined
as follows:

𝛤𝑘 = 𝜇+𝜎𝑘𝜇𝑡, 𝛤𝜔 = 𝜇+𝜎𝜔𝜇𝑡, 𝛤𝑑 = 2𝜎𝑑𝜇𝑡
1
𝑞
, 𝛤𝑞 = 𝛤𝑘

1
𝑞
, 𝛤𝑠 = 𝛤𝜔

1
𝑠

(18)

The turbulent viscosity is calculated as:

𝜇𝑡 = 𝜌𝑞2 min
[

1
𝑠2
,
𝑐𝑅
𝛺𝑠

]

(19)

The constants of the model remain the same as in the baseline 𝑘-𝜔
model.

3. Numerical method

A conservative finite volume methodology to discretize the gov-
erning equations on unstructured grids is employed. The diffusive
flux vector is discretized by employing a second-order central dif-
ferencing method using a full viscous stencil. The cell face gradient
of the primitive variables is approximated as suggested by Jawahar
3

and Kamath [17]. The mean-flow equations inviscid flux vector is
approximated at the cell interface using the AUFSR+ scheme [18]. The
turbulence model’s inviscid flux vector is computed using the HLLC
scheme [19]. The left and right state vectors of the convective flux
are evaluated using second order accuracy and are obtained by linear
reconstruction. A cell-wise gradient of the primitive variables is con-
structed using Green’s theorem. Let the vector 𝑾 =

(

𝑊𝑚;𝑚 = 1,…7
)

denote the primitive variables vector,

𝑾 =

{

[𝜌, 𝑢, 𝑣, 𝑤, 𝑝, 𝑘, 𝜔] 𝑘 − 𝜔 𝑚𝑜𝑑𝑒𝑙

[𝜌, 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑠] 𝑞 − 𝑠 𝑚𝑜𝑑𝑒𝑙
(20)

then the left and right primitive variables are reconstructed as follows:

(

𝑊𝑚
)

𝐿 =
(

𝑊𝑚
)

𝑖 +
(

𝜓𝑚
)

𝑖
(

∇𝑊𝑚
)

𝑖 ⋅ 𝒅
𝑖𝑗
𝑖 (21a)

(

𝑊𝑚
)

𝑅 =
(

𝑊𝑚
)

𝑗 +
(

𝜓𝑚
)

𝑗
(

∇𝑊𝑚
)

𝑗 ⋅ 𝒅
𝑖𝑗
𝑗 (21b)

where 𝒅𝑖𝑗𝑖 and 𝒅𝑖𝑗𝑗 are the distance vectors from the centers of cells 𝑖
and 𝑗, respectively, to the mid-point of face 𝑖𝑗. The term 𝜓𝑚 is the cell
limiter that is used to suppress oscillations in the solution.
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Fig. 2. Comparison of shear stress component profiles at six stations over the axisymmetric bump.
Fig. 3. Schematic description of the plane asymmetric diffuser geometry.
Two limiters were used: the limiter developed by Venkatakrish-

nan [20] and the limiter developed by Park and Kim [21], also known

as the MLP-𝑢2 limiter. The limiter developed by Park and Kim adopts

the structure of the Venkatakrishnan limiter, however, it differs by the
4

limiter arguments. The limiter function 𝜓 is defined as follows:

𝜓 = 1
[(

𝛥2+ + 𝜖2
)

𝛥− + 2𝛥2−𝛥+
2 2 2

]

(22)

𝛥− 𝛥+ + 2𝛥− + 𝛥−𝛥+ + 𝜖
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Fig. 4. Comparison of stream-wise velocity profiles at six stations along the separation region of the plane asymmetric diffuser.
where 𝜖 is a threshold parameter that distinguishes between a nearly
smooth region and a fluctuating one. The specific definitions of 𝛥+
and 𝛥− are given in the original publications [20,21]. The threshold
parameter 𝜖 is defined as follows:

𝜖2 =

⎧

⎪

⎨

⎪

⎩

(

𝐾1𝐿𝑐
)3 , 𝑉 𝑒𝑛𝑘𝑎𝑡𝑎𝑘𝑟𝑖𝑠ℎ𝑛𝑎𝑛

𝐾1
1 + 𝜃

𝛥2, 𝜃 =
𝛥

𝐾2𝐿
3∕2
𝑐

, 𝑀𝐿𝑃 − 𝑢2
(23)

where 𝐿𝑐 is a characteristic cell length, taken in the present work as
𝐿𝑐 = 𝑉 1∕3, 𝐾1 and 𝐾2 are constants, and 𝛥 is defined as the maximum
local flow variation. For the sake of simplicity, in the current work,
the two MLP-𝑢2 limiter constants are set as equal to one another.
Experience indicates that the solution and the convergence of the mean
flow equations are not very sensitive to the values of the constants, as
long as they admit values in the order of unity ∼ (1). However, their
values, when applied to turbulence model variables reconstruction,
may be critical to the flow solver robustness. In a previous work [8],
it was found that using the Venkatakrishnan limiter to the turbulence
model variables results in serious convergence difficulties, regardless of
the values of the limiter constant. On the other hand, using the MLP-𝑢2
limiter, a stable solution could be obtained. However, in this case, low
values of the constants (corresponds to the turbulence model variables)
were required.
5

To study the influence of these constants on the convergence char-
acteristics, especially of the turbulence model equations, separate con-
stants are defined for each set of the governing equations, i.e., the
mean-flow equations set and the turbulence model equations set.
Namely, 𝐾𝑀𝐹 represents the limiter constants applied to the mean-
flow variables reconstruction. In a similar manner, 𝐾𝑇𝑀 represents the
constant that is used for the turbulence model variables reconstruction.

Since the current work focuses on steady-state flows only, a first-
order implicit backward Euler time integration method is utilized.
Moreover, the implicit operator of the turbulence model is derived
using the unconditionally positive-convergent (UPC) scheme [8,22,23].
To further enhance the implicit operator stability, the five-stage implicit
Runge–Kutta scheme is employed [24].

It should be noted that the proposed variable substitution does not
remove the singular behavior of 𝜔 at the wall. However, the square-
root transformation is expected to numerically relieve this singular
behavior at a cost of the emergence of additional source diffusion
terms. This shifting of difficulties, was thoroughly discussed by Langer
and Swanson [25]. Indeed, the numerical treatment of diffusion source
terms in general is rarely addressed, as it does not easily lend itself
to a stable numerical scheme. However, a stabilized implicit method
for the diffusion source terms was recently proposed by the current
author [26]. This method is adopted in current work.
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Fig. 5. Comparison of normal-Reynolds stress profiles at six stations along the separation region of the plane asymmetric diffuser.
3.1. Realizability of the turbulence model

Realizability in the broad sense refers to the ability of the governing
equations and the numerical scheme to be physically sound. One exam-
ple already mentioned earlier is the realizability of the Reynolds stress
tensor. Another realizability measure is the positivity of the turbulence
model variables. In the present work, the positivity of the turbulence
model variables is guaranteed thanks to the use of the UPC scheme.
The UPC scheme preserves positivity for any time step and for any low
values, down to the computer machine minimum normalized positive
value (𝐷𝐵𝐿_𝑀𝐼𝑁 = 2.225𝐸 − 308).

The turbulence model variables may admit extremely low values.
This situation may be due to the interaction between several factors,
such as the limiter, the time integration method, and the discretization
method. For example, a non-monotonic solution may result in a spuri-
ous solution which in turn results in a strong decay of the turbulence
model variables. Using the 𝑘-𝜔 model with the Venkatakrishnan limiter
(that is applied to the reconstruction of 𝑘 and 𝜔) usually results in
extremely low values of 𝑘 and 𝜔, possibly down to the 𝐷𝐵𝐿_𝑀𝐼𝑁 .
To prevent the solution from reaching such meaningless low values,
artificially set low limit values are utilized for both 𝑘 and 𝜔. These
limits are set to 1×10−20 of their freestream (inflow) values. Using the
MLP-𝑢2 limiter, this limit is activated only for 𝑘, and only when the
6

limiter constant 𝐾𝑇𝑀 is set to a relatively high value of 𝐾𝑇𝑀 = 5
(namely a low dissipation scheme). Note that the positivity of the
turbulence model variables is monitored and verified prior to enforcing
these extremely low limits.

On the other hand, using the 𝑞-𝑠 turbulence model, no artificially
low limit values are used nor any other bounds are required. This is
regardless of the limiter type and its constants.

4. Numerical examples

Four test cases are simulated and examined. The aim of the tests is to
study the iterative convergence properties of the 𝑞-𝑠 model, specifically
its sensitivity to the limiter type. Beginning with the transonic flow
over an axisymmetric bump, followed by two-dimensional flow in an
asymmetric plane diffuser. These two cases were chosen to examine the
flow prediction similarity between the baseline 𝑘-𝜔 model and the 𝑞-𝑠
model. The other two cases are the NHLP-2D multi-element airfoil at
a high angle of attack, and the transonic flow about the NACA0012
airfoil.

Several general remarks and definitions should be made:

• The initial solutions of the mean-flow equations and of the turbu-
lence model equations are uniform and are based on free-stream
values.
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Fig. 6. Comparison of the lower wall shear stress coefficient of the plane asymmetric diffuser.
Fig. 7. The multi-element NHLP-2D airfoil unstructured grid.
• An infinite 𝐶𝐹𝐿 number was used for the turbulence model equa-
tions (the artificial time derivative is dropped). All subsequent
𝐶𝐹𝐿 numbers that are mentioned herein refer to the mean-flow
equations only.

• Let the vectors 𝑹 and 𝒓 signify the discrete residuals of the
mean-flow equations and of the turbulence model equations,
respectively. Iterative convergence is measured by examining the
relative drop (in orders of magnitude) of the second norm of the
residual vector with respect to the initial residual. The iterative
convergence of the mean-flow equations and of the turbulence
model equations is denoted by 𝑒𝑀𝐹 = log(‖𝑹‖2∕‖𝑹0‖2) and
𝑒 = log(‖𝒓‖ ∕‖𝒓 ‖ ), respectively.
7

𝑇𝑀 2 0 2
• All simulations are conducted with the mean-flow variables lim-
iter constant 𝐾𝑀𝐹 set to 𝐾𝑀𝐹 = 5.

4.1. Boundary conditions

Characteristic boundary conditions that are based on the Riemann
invariants are used for the mean-flow equations at the far-field bound-
aries. On solid walls, an adiabatic, no-slip boundary condition is ap-
plied. The turbulent kinetic energy, 𝑘, and its square root 𝑞 are set to
zero on solid walls (𝑞𝑤𝑎𝑙𝑙 =

√

𝑘𝑤𝑎𝑙𝑙). The free-stream turbulent kinetic
energy is evaluated according to the relation 𝑘∞ = 3

2 [(𝑇 𝑢)
2(𝑢2∞ + 𝑣2∞ +

𝑤2
∞)], where 𝑇 𝑢 represents the turbulence intensity (𝑞∞ =

√

𝑘∞). The
turbulent specific dissipation rate at the wall is specified in accordance
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Fig. 8. Comparison of the surface pressure coefficient distributions about the NHLP-2D airfoil.
Fig. 9. Convergence histories from flow simulations about the NHLP-2D airfoil at 𝛼 = 20.18◦ using the 𝑘-𝜔 model with the Venkatakrishnan limiter; 𝐾𝑇𝑀 = 0.5: —▵——▵—,
𝐾𝑇𝑀 = 2: —□——□—, 𝐾𝑇𝑀 = 5: —#——#—.
with the work by Menter [27], and is set to 𝜔𝑤𝑎𝑙𝑙 = 10 6𝜇
𝜌𝛽𝜔𝑑1

. Here,
1 is the wall distance to the first cell center adjacent to the wall.
n a similar manner, the wall boundary condition of 𝑠 is specified as
𝑤𝑎𝑙𝑙 = 10

√

6𝜇
𝜌𝛽𝜔𝑑1

.

.1.1. Axisymmetric transonic bump
The transonic flow over an axisymmetric bump is a complex test

ase, designed for the validation of turbulence models. It was exper-
mentally investigated by Bachalo and Johnson [28]. A compression
8

shock develops, interacting with the boundary layer, thus inducing
flow separation over the rear part of the bump. The flow reattaches
further downstream. To accurately predict the shock location and the
separation point, the turbulence model must adequately resolve the up-
stream boundary layer which includes favorable and adverse pressure
gradients. The position of flow reattachment is also highly dependent
on the turbulent shear stresses that develop in the separated shear layer.
Experimental data was recorded at a free-stream Mach number of 𝑀∞
= 0.875 and a Reynolds number of 𝑅𝑒 = 2.763⋅106 (based on the chord
𝑐
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Fig. 10. Convergence histories from flow simulations about the NHLP-2D airfoil at 𝛼 = 20.18◦ using the 𝑘-𝜔 model with the MLP-𝑢2 limiter; 𝐾𝑇𝑀 = 0.5: —▵——▵—, 𝐾𝑇𝑀 = 2:
—□——□—, 𝐾𝑇𝑀 = 5: —#——#—.
Fig. 11. Convergence histories from flow simulations about the NHLP-2D airfoil at 𝛼 = 20.18◦ using the 𝑞-𝑠 model with the Venkatakrishnan limiter; 𝐾𝑇𝑀 = 0.5: —▵——▵—,
𝐾𝑇𝑀 = 2: —□——□—, 𝐾𝑇𝑀 = 5: —#——#—.
ength of the bump, denoted by 𝑐). The bump is located between 0 <
∕𝑐 < 1, so that its crest is located at 𝑥∕𝑐 = 0.5. Numerical simulations
re carried out using an axisymmetric computational structured grid
hat is provided on the TMR website [29]. The dimensions are 721
321 × 2 (stream-wise × wall-normal × circumferential points). The

irst grid point neighboring the wall is placed at a distance of 8×10−6

f the bump length, corresponding to a value of 𝑦+1 lower than 0.5.
ased on the TMR practice, the free-stream turbulence intensity and the
ormalized free-stream turbulent viscosity, 𝜇𝑡∕𝜇, are set to 0.01% and
.01, respectively. The simulations are conducted using both turbulence
odels (𝑘-𝜔 and 𝑞-𝑠) and the MLP-𝑢2 limiter with 𝐾𝑇𝑀 = 5.

A comparison between the measured [28] and the computed nor-
malized stream-wise velocity at six stations along the axisymmetric
bump are shown in Fig. 1 (𝜂 denotes the vertical distance from the
surface). Overall, the results obtained from the two turbulence models
9

are indistinguishable, as expected. Upstream of the bump, at 𝑥∕𝑐 =
−0.25, a good agreement with experimental data is obtained with both
turbulence models. At 𝑥∕𝑐 = 0.688, located between the experimental
shock position and the separation onset point, certain deviations may
be observed. At positions 𝑥∕𝑐 = 0.813 and 𝑥∕𝑐 = 1.0, located within the
experimentally observed separation bubble, the computational results
are in good agreement with the measurements. Outside the separation
bubble, at 𝑥∕𝑐 = 1.125, located past the experimental reattachment
point, a good agreement is also obtained. Further downstream, at 𝑥∕𝑐
= 1.375, a noticeable discrepancy between the computational results
and the experimental data is observed, especially near the wall.

Similar to Fig. 1, a comparison of the normalized shear stress is
shown in Fig. 2. While the agreement of the computed results with the
experimental data at the first three stations is reasonable, the agree-
ment is less satisfactory at the three stations downstream. With the
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Fig. 12. Convergence histories from flow simulations about the NHLP-2D airfoil at 𝛼 = 20.18◦ using the 𝑞-𝑠 model with the MLP-𝑢2 limiter; 𝐾𝑇𝑀 = 0.5: —▵——▵—, 𝐾𝑇𝑀 = 2:
—□——□—, 𝐾 = 5: —#——#—.
𝑇𝑀
Fig. 13. Comparison of the MLP-𝑢2 limiter (𝐾𝑇𝑀 = 2) distribution from flow simulations about the NHLP-2D airfoil.
exception of the minor difference at the first station, the results from
the two models are indistinguishable. These models overlapping results
indicate that the transformed model does not hamper the conservation
of the baseline model equations.

4.1.2. Asymmetric plane diffuser
Computations of the steady turbulent flow through a plane asym-

metric diffuser, schematically shown in Fig. 3, have been conducted.
The flow in an asymmetric plane diffuser is difficult to predict. This
is due to the presence of flow separation and reattachment within a
confined domain, where adverse pressure gradients are quite domi-
nant. This is especially difficult because the diffuser’s upstream and
downstream bottom inclined wall corners were rounded to prevent
separation at these corners. Internal turbulent flow simulations of
geometries where separation is not ruled by sharp corners is very
10
challenging, particularly the separation point location and the extent
of the recirculation region.

The long inlet channel (110 times the channel’s height, 𝐻) is fol-
lowed by the diffuser with an opening angle of 10◦ of the bottom
wall with an expansion ratio of 4.7. The outlet boundary is placed at
the position of 𝑥 = 100𝐻 . The plane asymmetric diffuser geometry
was selected according to the experimental study performed by Buice
and Eaton [30]. In the current work, the inlet Mach number is set
to 𝑀𝑏 = 0.1 and the reference Reynolds number, which is based on
the channel height and the inlet velocity, is 𝑅𝑒𝑏 = 2×104. The free-
stream turbulence intensity and the normalized free-stream turbulent
viscosity, 𝜇𝑡∕𝜇, are set to 0.05% and 0.01, respectively. The compu-
tational structured grid has the dimension of 805×307 where the first
grid point neighboring the walls is placed at a distance of 2×10−4𝐻 ,
resulting in a value of 𝑦+ lower than 0.48. The MLP-𝑢2 limiter is
1
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Fig. 14. Lift coefficient histories from flow simulations about the NHLP-2D airfoil at 𝛼 = 20.18◦ using the 𝑘-𝜔 model; 𝐾𝑇𝑀 = 0.5: —▵——▵—, 𝐾𝑇𝑀 = 2: —□——□—, 𝐾𝑇𝑀 = 5:
#——#—.
Fig. 15. Lift coefficient histories from flow simulations about the NHLP-2D airfoil at 𝛼 = 20.18◦ using the 𝑞-𝑠 model; 𝐾𝑇𝑀 = 0.5: —▵——▵—, 𝐾𝑇𝑀 = 2: —□——□—, 𝐾𝑇𝑀 = 5:
#——#—.
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tilized with 𝐾𝑇𝑀 = 5. A comparison of the calculated stream-wise
elocity profile and the experimental data at six stations along the
eparation region is shown in Fig. 4. The computed results are in good
greement with the experimental data. The computed reattachment
osition is at 𝑥∕𝐻 = 28.4, which is in a good agreement with the
xperiment [30] position of 𝑥∕𝐻 = 28.9. Similar to the previous case
f the axisymmetric transonic bump, the results obtained from the two
urbulence models are indistinguishable.

Fig. 5 shows a comparison of the normalized Reynolds shear stress
etween computed results and experimental data. The computed
tresses strongly underestimate the measured data. This is likely due
o the use of a linear-eddy viscosity model. It was shown by Gerolymos
t al. [31] that only advanced Reynolds stress models are capable
f accurately capturing the Reynolds stresses. Another measure that
11

t

s used to further highlight the flow prediction of the two models
s the wall shear stress coefficient (skin friction coefficient). Fig. 6
hows a comparison of the lower wall shear stress coefficient between
omputed results and experimental data. Both models predicted an
arly separation compared to the experiments. However, the overall
greement with the experimental results is very reasonable, and, as
xpected, the computed results overlap each other.

.1.3. The NHLP-2D multi-element airfoil
The takeoff configuration of the NHLP-2D multi-element airfoil is

hosen in the present work. In this configuration, the slat deflection is
𝑠 = 25◦ and the flap deflection is 𝛿𝑓 = 20◦. There are two different
ays of defining the configuration: the vertical sense, as defined in

he experiment [32], and the orthogonal sense, as adopted by most
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Fig. 16. The structured and unstructured grids about the NACA0012 airfoil.

Fig. 17. Comparison of the surface pressure coefficient distributions about the NACA0012 airfoil using the MLP-𝑢2 limiter (𝐾𝑇𝑀 = 0.5).
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Fig. 18. Convergence histories from flow simulations about the NACA0012 airfoil with the unstructured grid using the 𝑘-𝜔 model and the Venkatakrishnan limiter; 𝐾𝑇𝑀 = 0.5:
▵——▵—, 𝐾𝑇𝑀 = 2: —□——□—, 𝐾𝑇𝑀 = 5: —#——#—.
Fig. 19. Convergence histories from flow simulations about the NACA0012 airfoil with the unstructured grid using the 𝑘-𝜔 model and the MLP-𝑢2 limiter; 𝐾𝑇𝑀 = 0.5: —▵——▵—,
𝐾𝑇𝑀 = 2: —□——□—, 𝐾𝑇𝑀 = 5: —#——#—.
esearchers [33]. The current paper adopts the definition of the original
xperiment. Due to grid generation considerations, it is a common
ractice to sharpen the trailing edges of the three elements. In contrast,
he exact experimental geometry is reproduced in the current work,
nd the trailing edges are of a finite thickness. The computational
esh is an unstructured grid composed of mixed-type elements, with

pproximately 294,000 cells (see Fig. 7). The center of the first cell
eighboring the wall is located at a distance of 2.5 × 10−6 of the airfoil

chord, from the airfoil surface (corresponds to a value of 𝑦+1 lower
than 1.38). The computational domain extends up to approximately
230 airfoil chord lengths. The flow conditions are chosen to match
those of the experiments. The free-stream Mach number is set to 𝑀∞ =
0.197, the Reynolds number is set to 𝑅𝑒∞ = 3.52×106, and the angle
of attack is set to 𝛼 = 20.18◦. The free-stream turbulence intensity
13

and the normalized free-stream turbulent viscosity, 𝜇𝑡∕𝜇, were set to
0.1% and 0.1, respectively. Two sets of simulations are conducted
using the 𝑘-𝜔 and the 𝑞-𝑠 models. The first set of simulations utilizes
the Venkatakrishnan limiter while the second set utilizes the MLP-u2
limiter. For each set, the effect of various settings of the 𝐾𝑇𝑀 limiter
constant is examined. A 𝐶𝐹𝐿 number of 100 is used.

The prediction accuracy is reflected in the comparison of the cal-
culated surface pressure coefficient with the experimental results, as
presented in Fig. 8. The results obtained from the two turbulence mod-
els are indistinguishable, and the agreement between the computational
and experimental results is excellent. Note that the good agreement
is also evident at the slat trailing edge. This agreement between the
calculated pressure coefficient and the experiment on the slat trailing
edge could not have been obtained with the commonly used sharp
trailing edge (see for example [33]).
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Fig. 20. Convergence histories from flow simulations about the NACA0012 airfoil with the unstructured grid using the 𝑞-𝑠 model and the Venkatakrishnan limiter; 𝐾𝑇𝑀 = 0.5:
▵——▵—, 𝐾𝑇𝑀 = 2: —□——□—, 𝐾𝑇𝑀 = 5: —#——#—.
Fig. 21. Convergence histories from flow simulations about the NACA0012 airfoil with the unstructured grid using the 𝑞-𝑠 model and the MLP-𝑢2 limiter; 𝐾𝑇𝑀 = 0.5: —▵——▵—,
𝐾𝑇𝑀 = 2: —□——□—, 𝐾𝑇𝑀 = 5: —#——#—.
A comparison of convergence histories recorded in the simulations
using the 𝑘-𝜔 model with the Venkatakrishnan limiter is shown in
Fig. 9. The convergence pattern of the turbulence model equations
shows distinct oscillations with strong spikes, regardless of the values
of limiter constant. Theoretically, reducing the value of the limiter
constant may add numerical dissipation into the solution. However,
this is not reflected in the turbulence model convergence pattern.
The convergence of the mean-flow equations stalls at 4–5 orders of
magnitude for all cases. Interestingly, the mean-flow residual obtained
from the simulation using 𝐾𝑇𝑀 = 2, exhibits the poorest convergence
level.

Fig. 10 shows the convergence behavior obtained from the simula-
tions using the 𝑘-𝜔 model with the MLP-𝑢2 limiter. Generally, the use
of the MLP-𝑢2 limiter results in a significantly improved convergence
14
behavior. As expected, reducing the limiter constant, 𝐾𝑇𝑀 , improved
the convergence level of the turbulence model equations. Moreover,
the improved convergence of the turbulence model is also reflected
in a significant improvement of the mean-flow equations. Overall, the
convergence pattern shows a consistent dependency on the limiter
constant.

Figs. 11 and 12 shows the convergence behavior obtained from the
simulations using the 𝑞-𝑠 turbulence model with the Venkatakrishnan
and MLP-𝑢2 limiters, respectively. A clear dramatic improvement in
the convergence characteristics is shown. Foremost evident is that the
𝑞-𝑠 model exhibits a significantly reduced sensitivity to the limiter type
or to the limiter constant values. With both limiters, and regardless
of the values of 𝐾𝑇𝑀 , the residual of the mean-flow equations drops
approximately eight orders of magnitude.
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Fig. 22. Convergence histories from flow simulations about the NACA0012 airfoil with the structured grid using the 𝑘-𝜔 model and the Venkatakrishnan limiter; 𝐾𝑇𝑀 = 0.5:
▵——▵—, 𝐾𝑇𝑀 = 2: —□——□—, 𝐾𝑇𝑀 = 5: —#——#—.
Fig. 23. Convergence histories from flow simulations about the NACA0012 airfoil with the structured grid using the 𝑞-𝑠 model and the Venkatakrishnan limiter; 𝐾𝑇𝑀 = 0.5:
▵——▵—, 𝐾𝑇𝑀 = 2: —□——□—, 𝐾𝑇𝑀 = 5: —#——#—.
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It should be noted that although the 𝑞-𝑠 model is obtained through
n exact transformation of the 𝑘-𝜔 model, the numerical equivalence
f the solution is questionable [25]. One critical relevant issue is the
nfluence of the limiter on the solution. Fig. 13 shows a map of the
LP-𝑢2 limiter using 𝐾𝑇𝑀 = 2 that is applied to the reconstruction

f 𝑘 and 𝑞. Note that the limiter map is scaled between 0.2 to 1.0.
urprisingly, the limiter distribution of 𝑘 displays irregular behavior,
specially at the far field. Moreover, using the variable 𝑞 results in a
ignificantly reduced activation of the limiter.

Another measure that may highlight the impact of the limiter type
n the turbulence model is the convergence of the aerodynamics forces,
pecifically, the convergence of the lift coefficient. Fig. 14 shows the
ift coefficient histories obtained from the simulations using the 𝑘-
15

turbulence model with the Venkatakrishnan and MLP-𝑢2 limiters. l
he results obtained using the Venkatakrishnan limiter (Fig. 14 (𝑎))
xhibit a non-convergent behavior of the lift coefficient. For all three
alues of 𝐾𝑇𝑀 , the lift coefficient reaches an oscillatory behavior at
bout 3,500 iterations. Based on the residual convergence behavior
Fig. 9), the use of a limiter constant of 𝐾𝑇𝑀 = 2 results in the
oorest lift coefficient convergence characteristics. An improvement in
he convergence behavior of the lift coefficient is obtained when the
LP-𝑢2 limiter is used. Except for certain minor oscillations that are

resent when using the highest value of 𝐾𝑇𝑀 , for all three values, a
aster lift coefficient convergence is obtained.

In contrast, by using the 𝑞-𝑠 model, a far superior lift coefficient
onvergence characteristics are obtained, as shown in Fig. 15. For all
imiter constants, and regardless of the limiter type, an oscillation free

ift coefficient convergence is obtained.
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Fig. 24. Lift coefficient histories from flow simulations about the NACA0012 airfoil with the structured grid using the Venkatakrishnan limiter; 𝐾𝑇𝑀 = 0.5: —▵——▵—, 𝐾𝑇𝑀 = 2:
□——□—, 𝐾 = 5: —#——#—.
𝑇𝑀
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.1.4. NACA0012 airfoil
Transonic flow involving shock induced separation is known to be

umerically challenging. Two main difficulties can be indicated. First,
ccurately capturing the shock position and the subsequent extent of
he separation. The second issue is the residual convergence difficulties
hich is the subject of the current work.

An experimental study about the symmetric NACA0012 airfoil at
arious transonic flow conditions was conducted by McDevitt and
kuno [34]. The experiment was carried out at the NASA Ames Re-

earch Center HRC facility. The NACA0012 airfoil chord length was 𝑐
20.32 cm. The wind-tunnel tests were conducted for the evaluation

f Reynolds number effects on the airfoil performance. The Reynolds
umber range of 𝑅𝑒∞ = 1–20 × 106 was addressed.

In the present work, the flow conditions correspond to a Reynolds
umber of 𝑅𝑒∞ = 10×106, an incidence angle of 𝛼 = 3.91◦, and the Mach
umber is set to 𝑀∞ = 0.726. The free-stream turbulence intensity,
𝑢, and the normalized free-stream turbulent viscosity, 𝜇𝑡∕𝜇, were

et to 0.1% and 0.1, respectively. A structured- and an unstructured-
rids with a blunt trailing edge are used (shown in Fig. 16). The
tructured grid is an O-Type grid with the dimensions of 635×149 in
he circumferential and normal directions, respectively. The first grid
oint neighboring the wall is placed at a distance of 2×10−6 of the airfoil
hord (corresponds to a value of 𝑦+1 lower than 0.5). The unstructured
rid that is used consists of 58,024 mixed-type elements. Near the wall,
he unstructured grid is composed of the first 90 layers of the structured
rid. Above these layers the grid consists of triangular and quadrilateral
rid elements. The computational domain of the grids is extended to
early 80 chord lengths from the airfoil surface. The simulations are
onducted using a CFL number of 50. The Venkatakrishnan limiter and
he MLP-𝑢2 limiter are used with three values of the limiter constant,
𝑇𝑀 = 0.5, 2, and 5.

Fig. 17 contains a comparison between the calculated and the exper-
mentally measured surface pressure coefficients [34]. The computed
esults are obtained from the simulations using the unstructured grid
mploying the MLP-𝑢2 limiter with 𝐾𝑇𝑀 = 0.5. For all practical

purposes, the computed surface pressure coefficient obtained from both
models is the same. The computed results capture the location of the
shock downstream of the experimentally measured shock location. A
similar discrepancy was reported by Barakos and Drikakis using several
turbulence models [35]. However, the pressure recovery after the shock
is well predicted.
16
A comparison of convergence histories recorded in the simulations
using the unstructured grid with the 𝑘-𝜔 model and the Venkatakrish-
nan limiter is shown in Fig. 18. The residual of the governing equations
shows the same characteristics as observed from the simulations about
the NHLP-2D multi-element airfoil (Fig. 9 a)). Namely, the residual of
the turbulence model exhibits strong spikes, and that of the mean-flow
equations displays an oscillatory pattern. Moreover, using the highest
value of 𝐾𝑇𝑀 , the mean-flow residual could not be reduced below one
order of magnitude. Some improvement is achieved when using the
MLP-𝑢2 limiter, as shown in Fig. 19, and a reasonable convergence level
is obtained only with the lowest limiter constant.

Figs. 20 and 21 show the residual convergence behavior that is
obtained from the simulations using the unstructured grid with the 𝑞-𝑠
turbulence model while employing the Venkatakrishnan and MLP-𝑢2
limiters, respectively. Similar to the observations made with the NHLP-
2D case, a marked improvement in the convergence characteristics is
obtained. Once again, the 𝑞-𝑠 model exhibits a significantly reduced
sensitivity to the limiter type or to the limiter constant values. With
both limiters, and regardless of the values of 𝐾𝑇𝑀 , the residual of the
mean-flow equations drops about eight orders of magnitude.

The aim of the additional simulations using the structured grid is to
examine whether the sensitivity to the limiter type is grid dependent.
These simulations were conducted with the Venkatakrishnan limiter
only. Figs. 22 and 23 show a comparison of convergence histories
obtained from the simulations using the structured grid. Overall, the
convergence characteristics that are obtained are similar to those ob-
tained from the simulations using the unstructured grid. One exception
is that when using the structured grid with the 𝑘-𝜔 model, a reasonable
convergence is obtained with the lowest limiter constant. Overall, the
𝑞-𝑠 model shows consistent and improved convergence characteristics.

Fig. 24 shows the lift coefficient histories obtained from the sim-
ulations using the structured grid. As expected, there is a correlation
between the residual convergence and the lift convergence. While using
the 𝑞-𝑠 model, a fully converged lift coefficient is obtained; while with
the 𝑘-𝜔 model the lift force is converged only with the lowest limiter
value. As a means for comparison, consider the lowest value of 𝐾𝑇𝑀
= 0.5, a faster convergence is obtained using the 𝑞-𝑠 model. It should
e emphasized that when using the 𝑘-𝜔 model with high values of the

limiter constant, the solution exhibits an oscillatory flow field instead
of steady-state one. As a result, the lift coefficient exhibits an oscillatory
behavior.
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5. Conclusions

A square-root transformation that is applied to a 𝑘-𝜔 model is
proposed. The transformation stems from the encountered numerical
difficulties that are common to second order accurate schemes for the
turbulence model equations when using unstructured grids. The specific
choice of the proposed model working variables aims to smooth the
turbulence model dependent variables. Using the full transformation
strategy, the transformed model accurately reproduce the baseline 𝑘-𝜔
model performance. Moreover, the advantage of the alternative formu-
lation is in its significant reduction of sensitivity to the limiter type.
Due to this reduced sensitivity, the convergence characteristics of the
transformed model are significantly improved. As a result, the aerody-
namic forces converge twice as fast compared to the force convergence
that is obtained using the baseline 𝑘-𝜔 model. Overall, the transformed
model is found to be significantly more reliable for computations on
unstructured grids. Although the present work focuses on a specific 𝑘-𝜔
model, the square-root transformation may be beneficial for other 𝑘-𝜔
models.
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