各位老哥好,有个小问题,我目前现在计算域中取一个矩形平面区域,这个矩形平面用于注入粒子,有没有相关的InjectionModel呢?
AppleKiller
帖子
-
关于lagrange粒子注入问题 -
多相流设置入口为质量流量边界条件时,体积分数场和速度场是如何初始化的呢?各位大佬好,我看到一篇使用Fluent模拟多相流的论文,使用的VOF模型,设置的边界条件为质量流量边界条件,我的模拟主要借助OpenFOAM的VOF方法(interFoam求解器),OpenFOAM中关于VOF方法的多相流模拟需要初始化体积分数场和速度场。
所以我比较想了解,Fluent中如果设置了两种流体的质量流量,那么是怎么通过这两个质量流量来设置体积分数场和速度场的边界条件呢?(两种流体都是不可压缩流体)
-
open foam10植入曳力模型lnInclude文件夹中有这个BlendedInterfacialModel.H文件的链接吗?
-
如何基于blockMesh生成的圆柱网格添加边界层我这出现了这个错误,想问问李老师这个问题怎么解决呢?
-
如何基于blockMesh生成的圆柱网格添加边界层@李东岳 这个我尝试过调节simpleGrading (1 1 1),但是报错了。好像是因为我分为了五个块
我想问问老师,除了上面这个图的地方还需要改动哪些地方呀? -
如何基于blockMesh生成的圆柱网格添加边界层@李东岳 李老师好,我想要加入湍流模型,比如k-epsilon,所以需要对壁面加入边界层,blockMeshDict中有专门添加边界层的模块字典吗?
-
如何基于blockMesh生成的圆柱网格添加边界层各位大佬好,我通过如下的blockMesh生成了一个圆柱型网格(O型切分),但想针对壁面wallPipe添加5层边界层进行湍流模拟,我使用的blockMeshDict和snappyHexMeshDict文件如下,blockMesh可以生成较好的网格,但是使用snappyHexMesh -overwrite命令后,网格没有任何变化,想请教各位,OpenFOAM有没有其他添加边界层的方法呢?或者我目前的方法有什么问题?
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: 5 | | \\ / A nd | Web: www.OpenFOAM.org | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object blockMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // convertToMeters 1; trueradius 0.025; radius #calc "sqrt(2.0)*0.5*$trueradius";//圆柱半径 radiusNeg #calc "-sqrt(2.0)*0.5*$trueradius"; box 0.0092; // boxNeg定义中间长方体block的范围 0.12 boxNeg -0.0092; zMax 0.5;//100;//zMax和zMin定义圆柱体的长度 zMin 0.0; nR 10;//扇形block半径上的节点数 6 nBox 12;//矩形block正方形边上的节点数 8 nZ 180;//5000;//轴向方向上的节点数 verbose no; geometry { cylinder { type searchableCylinder; point1 (0 0 -0.1);//由point1和point2构成的区域要大于zMax和zMin构成的区域 point2 (0 0 1000.1);//100.1); radius $trueradius; } } scale 1; vertices ( // Inner ($boxNeg $boxNeg $zMin)//0 ($box $boxNeg $zMin)//1 ($boxNeg $box $zMin)//2 ($box $box $zMin)//3 // Outer block points project ($radiusNeg $radiusNeg $zMin) (cylinder)//4 project ($radius $radiusNeg $zMin) (cylinder)//5 project ($radiusNeg $radius $zMin) (cylinder)//6 project ($radius $radius $zMin) (cylinder)//7 // Inner ($boxNeg $boxNeg $zMax)//8 ($box $boxNeg $zMax)//9 ($boxNeg $box $zMax)//10 ($box $box $zMax)//11 // Outer block points project ($radiusNeg $radiusNeg $zMax) (cylinder)//12 project ($radius $radiusNeg $zMax) (cylinder)//13 project ($radiusNeg $radius $zMax) (cylinder)//14 project ($radius $radius $zMax) (cylinder)//15 ); blocks ( hex ( 4 5 1 0 12 13 9 8) ($nBox $nR $nZ) simpleGrading (1 1 1) hex ( 4 0 2 6 12 8 10 14) ($nR $nBox $nZ) simpleGrading (1 1 1) hex ( 1 5 7 3 9 13 15 11) ($nR $nBox $nZ) simpleGrading (1 1 1) hex ( 2 3 7 6 10 11 15 14) ($nBox $nR $nZ) simpleGrading (1 1 1) hex ( 0 1 3 2 8 9 11 10) ($nBox $nBox $nZ) simpleGrading (1 1 1) ); edges ( project 4 5 (cylinder) project 7 5 (cylinder) project 6 7 (cylinder) project 4 6 (cylinder) project 12 13 (cylinder) project 13 15 (cylinder) project 12 14 (cylinder) project 14 15 (cylinder) ); boundary ( bottom { type patch; // patch faces ( (0 1 3 2) (0 2 6 4) (0 1 5 4) (1 5 7 3) (2 3 7 6) ); } outlet { type patch; // patch faces ( (8 9 11 10) (8 10 14 12) (8 9 13 12) (9 13 15 11) (10 11 15 14) ); } wallPipe { type wall; faces ( (4 12 14 6) (4 5 13 12) (5 13 15 7) (6 7 15 14) ); } ); mergePatchPairs ( ); // ************************************************************************* //
snappyHexMeshDict文件
/*--------------------------------*- C++ -*----------------------------------*\ | ========= | | | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox | | \\ / O peration | Version: v2206 | | \\ / A nd | Website: www.openfoam.com | | \\/ M anipulation | | \*---------------------------------------------------------------------------*/ FoamFile { version 2.0; format ascii; class dictionary; object snappyHexMeshDict; } // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // // Which of the steps to run castellatedMesh false; snap false; addLayers true; // Geometry. Definition of all surfaces. All surfaces are of class // searchableSurface. geometry {} // Settings for the castellatedMesh generation. castellatedMeshControls { // Refinement parameters // ~~~~~~~~~~~~~~~~~~~~~ // If local number of cells is >= maxLocalCells on any processor // switches from from refinement followed by balancing // (current method) to (weighted) balancing before refinement. maxLocalCells 100000; // Overall cell limit (approximately). Refinement will stop immediately // upon reaching this number so a refinement level might not complete. // Note that this is the number of cells before removing the part which // is not 'visible' from the keepPoint. The final number of cells might // actually be a lot less. maxGlobalCells 2000000; // The surface refinement loop might spend lots of iterations refining just a // few cells. This setting will cause refinement to stop if <= minimumRefine // are selected for refinement. Note: it will at least do one iteration // (unless the number of cells to refine is 0) minRefinementCells 0; // Allow a certain level of imbalance during refining // (since balancing is quite expensive) // Expressed as fraction of perfect balance (= overall number of cells / // nProcs). 0=balance always. maxLoadUnbalance 0.10; // Number of buffer layers between different levels. // 1 means normal 2:1 refinement restriction, larger means slower // refinement. nCellsBetweenLevels 1; // Explicit feature edge refinement // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies a level for any cell intersected by explicitly provided // edges. // This is a featureEdgeMesh, read from constant/triSurface for now. // Specify 'levels' in the same way as the 'distance' mode in the // refinementRegions (see below). The old specification // level 2; // is equivalent to // levels ((0 2)); features (); // Surface based refinement // ~~~~~~~~~~~~~~~~~~~~~~~~ // Specifies two levels for every surface. The first is the minimum level, // every cell intersecting a surface gets refined up to the minimum level. // The second level is the maximum level. Cells that 'see' multiple // intersections where the intersections make an // angle > resolveFeatureAngle get refined up to the maximum level. refinementSurfaces {} // Feature angle: // - used if min and max refinement level of a surface differ // - used if feature snapping (see snapControls below) is used resolveFeatureAngle 30; // Region-wise refinement // ~~~~~~~~~~~~~~~~~~~~~~ // Specifies refinement level for cells in relation to a surface. One of // three modes // - distance. 'levels' specifies per distance to the surface the // wanted refinement level. The distances need to be specified in // increasing order. // - inside. 'levels' is only one entry and only the level is used. All // cells inside the surface get refined up to the level. The surface // needs to be closed for this to be possible. // - outside. Same but cells outside. refinementRegions {} // Mesh selection // ~~~~~~~~~~~~~~ // After refinement patches get added for all refinementSurfaces and // all cells intersecting the surfaces get put into these patches. The // section reachable from the location(s)InMesh is kept. // NOTE: This point should never be on a face, always inside a cell, even // after refinement. // // There are two different ways of specifying the regions to keep: // 1. a single locationInMesh. All the 'zoned' surfaces are marked as such // in the refinementSurfaces with the faceZone and cellZone keywords. // // or // // 2. multiple locationsInMesh, with per location the name of the cellZone. // This uses walking to determine zones and automatically creates // faceZones on the outside of cellZones. // Ad 1. Specify a single location and how to treat faces inbetween // cellZones locationInMesh (5 0.28 0.43); // Whether any faceZones (as specified in the refinementSurfaces) // are only on the boundary of corresponding cellZones or also allow // free-standing zone faces. Not used if there are no faceZones. allowFreeStandingZoneFaces true; } // Settings for the snapping. snapControls { // Number of patch smoothing iterations before finding correspondence // to surface nSmoothPatch 3; // Maximum relative distance for points to be attracted by surface. // True distance is this factor times local maximum edge length. // Note: changed(corrected) w.r.t 1.7.x! (1.7.x used 2* tolerance) tolerance 2.0; // Number of mesh displacement relaxation iterations. nSolveIter 30; // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; } // Settings for the layer addition. addLayersControls { // Are the thickness parameters below relative to the undistorted // size of the refined cell outside layer (true) or absolute sizes (false). relativeSizes false; // Layers defined by overall thickness and expansion ratio // thickness 0.7e-3; firstLayerThickness 2e-3; expansionRatio 1.2; // Minimum overall thickness of total layers. If for any reason layer // cannot be above minThickness do not add layer. // If relativeSizes this is relative to undistorted size of cell // outside layer.. minThickness 0.0001e-3; // Per final patch (so not geometry!) the layer information layers { sidewalls { nSurfaceLayers 3; } } // If points get not extruded do nGrow layers of connected faces that are // also not grown. This helps convergence of the layer addition process // close to features. // Note: changed(corrected) w.r.t 1.7.x! (didn't do anything in 1.7.x) nGrow 0; // Advanced settings // Static analysis of starting mesh // When not to extrude surface. 0 is flat surface, 90 is when two faces // are perpendicular featureAngle 130; // When to merge patch faces. Default is featureAngle //mergePatchFacesAngle 45; // Do not extrude around sharp edge if not both faces are extruded. // Default is 0.5*featureAngle. Set to -180 always attempt extrusion layerTerminationAngle -180; // Stop layer growth on highly warped cells maxFaceThicknessRatio 0.5; // Patch displacement // Number of smoothing iterations of surface normals nSmoothSurfaceNormals 1; // Smooth layer thickness over surface patches nSmoothThickness 10; // Medial axis analysis // Angle used to pick up medial axis points // Note: changed(corrected) w.r.t 1.7.x! 90 degrees corresponds to 130 // in 1.7.x. minMedialAxisAngle 90; // Reduce layer growth where ratio thickness to medial // distance is large maxThicknessToMedialRatio 0.3; // Number of smoothing iterations of interior mesh movement direction nSmoothNormals 3; // Optional: at non-patched sides allow mesh to slip if extrusion // direction makes angle larger than slipFeatureAngle. Default is // 0.5*featureAngle. slipFeatureAngle 30; //// Motion solver instead of default medial axis // // //- Use displacementMotionSolver to shrink mesh // meshShrinker displacementMotionSolver; // // //- Use laplacian for shrinking // solver displacementLaplacian; // // displacementLaplacianCoeffs // { // diffusivity quadratic inverseDistance ("m.*"); // } // Mesh shrinking // Maximum number of snapping relaxation iterations. Should stop // before upon reaching a correct mesh. nRelaxIter 5; // Create buffer region for new layer terminations nBufferCellsNoExtrude 0; // Overall max number of layer addition iterations. The mesher will // exit if it reaches this number of iterations; possibly with an // illegal mesh. nLayerIter 50; // Overall number of outer layer of iterations. Default is 1 -> all // layers are added in one pass. nOuterIter 3; } // Generic mesh quality settings. At any undoable phase these determine // where to undo. meshQualityControls { // Specify mesh quality constraints in separate dictionary so can // be reused (e.g. checkMesh -meshQuality) #include "meshQualityDict" // Advanced // Number of error distribution iterations nSmoothScale 4; // amount to scale back displacement at error points errorReduction 0.75; } // Advanced // Merge tolerance. Is fraction of overall bounding box of initial mesh. // Note: the write tolerance needs to be higher than this. mergeTolerance 1e-6; debugFlags ( //mesh ); // Write flags writeFlags ( //layerFields // write volScalarField for layer coverage ); // ************************************************************************* //
blockMesh后生成的网格(俯视图)
-
MPPICInterFoam支持自适应网格技术吗?不支持
-
MPPICInterFoam支持自适应网格技术吗?@sxz0823 不支持,需要自己动手改代码
-
DEM和DPM@youhaoyu 你这很有可能是某个函数错了,比如除以了一个很小的数。
-
气泡受力分析@youhaoyu 谢谢老哥,又看到你啦,哈哈哈哈,我一般取0.5,确实,虚拟质量力对这种离散气泡的最终上升速度影响很大。
-
一个关于Lagrange粒子输出的问题,Parcel fate: (number, mass)@youhaoyu 谢谢老哥,但是其中的system怎么理解呢?
-
微型气泡是否有固体粒子像杨氏模量、刚度类似的概念好的谢谢老师
-
一个关于Lagrange粒子输出的问题,Parcel fate: (number, mass)各位大佬好,在使用OpenFOAM中的粒子信息输出过程中,有这么一条信息
上图中标白色部分的Parcel fate system(number, mass)
是什么意思呢?是逃离了系统吗? -
微型气泡是否有固体粒子像杨氏模量、刚度类似的概念谢谢老哥,我目前的想法是在OpenFOAM原有的PairCollision类的基础上修改,将固体粒子的碰撞模型修改成气泡的,老哥关于气泡的碰撞模型有了解吗?我了解的就是简单的硬球模型。比如这篇文章https://www.sciencedirect.com/science/article/pii/S0032591014010183
-
微型气泡是否有固体粒子像杨氏模量、刚度类似的概念@youhaoyu 老哥,方便发下提到的这篇文章吗?我想参考参考
-
微型气泡是否有固体粒子像杨氏模量、刚度类似的概念各位大佬好,我有个小问题,微型气泡是否有固体粒子像杨氏模量、刚度类似的概念呢?有什么相关的文章吗?
-
鼓泡床参数设置的一个问题 -
Fluent计算3D气泡上升气液界面锯齿状问题各位大佬好,这几天刚学习Fluent中的VOF方法,计算3D双气泡上浮,但是截取一个截面发现气液界面呈现出不规整的锯齿状(气泡直径大概等于15个网格的长度),下图的截图是跑了0.005s(模拟使用VOF方法,没有求解能量方程和湍流方程,气液两相分别为水和空气)
网格量为300万,这个截面部分的网格分布如下:
对于VOF、动量方程的格式选择如下
这个结果有问题吗?请问大家怎么解决呢?谢谢!
-
foamMeshToFluent重新导入网格,又没有报错了,好像目前没问题了