我也想问一下,不知道理解对不对。对于湍流粘度(Eddy Viscosity)模型,壁面切应力应该是这个
$$ \tau_{w}=\tau_{d} \cdot {n}_f =-\mu_{eff} \cdot {dev}(2S) \cdot {n}_f $$
$ S $是应变率张量, $\mu_{eff}$ 是流体的有效动力粘度(考虑湍流影响), $dev$ 是二阶应力张量的deviatoric操作,用以获取该项的剪切应力部分
$$ dev(\tau)=\tau - \frac{1}{3}tr(\tau)\bf{I} $$
$$ S = \frac{1}{2}(L + L^T) = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{1}{2}(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}) & \frac{1}{2}(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}) \\ \frac{1}{2}(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}) & \frac{\partial v}{\partial y} & \frac{1}{2}(\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z}) \\ \frac{1}{2}(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}) & \frac{1}{2}(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}) & \frac{\partial w}{\partial z}\end{bmatrix}$$
这样看的话,假设 $\tau_d$ 可以写成
$$\tau_d = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz}\end{bmatrix}$$
有$ {n}_f$为沿 z轴垂直于xy的平面A的法向矢量,写成
$$\bf{n}_f =\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
那么得到的 $\tau_w $为,其中 $\sigma_{xz}$ 和 $\sigma_{yz}$为 A平面平行于 x 和 y 轴的分量, $\sigma_{zz}$ 为沿 z 轴 垂直于 A 平面的法向分量
$$\tau_w =\begin{bmatrix} \sigma_{xz} \\ \sigma_{yz} \\ \sigma_{zz} \end{bmatrix}$$
所以壁面切应力矢量$\tau_w $和面法向$\bf{n}_f$矢量方向不一致