如果不考虑时间项
\begin{equation}
\int^{f+1}_ {f} \frac{\partial}{\partial x}\left(\alpha \frac{\partial \phi}{\partial x}\right)\mathrm{d}x=\left(\alpha \frac{\partial \phi}{\partial x}\right)_ {f+1}-\left(\alpha \frac{\partial \phi}{\partial x}\right)_ {f}
\end{equation}
把后面两项$\left(\alpha \frac{\partial \phi}{\partial x}\right)_ {f+1}-\left(\alpha \frac{\partial \phi}{\partial x}\right)_{f}$把所有的面连起来,看起来是守恒的,剩下的只有边界条件