Skip to content
  • 最新
  • Categories
  • 东岳流体
  • 随机看[请狂点我]
Skins
  • Light
  • Cerulean
  • Cosmo
  • Flatly
  • Journal
  • Litera
  • Lumen
  • Lux
  • Materia
  • Minty
  • Morph
  • Pulse
  • Sandstone
  • Simplex
  • Sketchy
  • Spacelab
  • United
  • Yeti
  • Zephyr
  • Dark
  • Cyborg
  • Darkly
  • Quartz
  • Slate
  • Solar
  • Superhero
  • Vapor

  • Default (No Skin)
  • No Skin
Collapse
CFD中文网

CFD中文网

  1. CFD中文网
  2. Algorithm
  3. 对于非线性的对流项,目前有哪些离散方法可用?

对于非线性的对流项,目前有哪些离散方法可用?

Scheduled Pinned Locked Moved Algorithm
3 Posts 2 Posters 3.5k Views
  • Oldest to Newest
  • Newest to Oldest
  • Most Votes
Reply
  • Reply as topic
Log in to reply
This topic has been deleted. Only users with topic management privileges can see it.
  • L Offline
    L Offline
    LuoS
    wrote on last edited by
    #1

    看的好像有两种:1.把偏微分符号外的速度放到偏微分号里面成为U^2/2(原谅我打不出来公式);2.处理方式同线性的对流项,假定一个U为常数。
    第一种方法能够接受,但会引起什么误差或不合理呢?不懂。第二种方法就感觉很别扭,老感觉哪不对一样。
    等不得看算法,先抛出来请教一下。

    1 Reply Last reply
  • 李东岳李 Online
    李东岳李 Online
    李东岳 管理员
    wrote on last edited by
    #2

    目前第二种方式很常见,对$\nabla\cdot\bfU^{n+1}\bfU^{n+1}$做积分有$\sum (\bfU^{n+1}\bfU^{n+1})_f \cdot\bfS_f$,然后线性化就是$\sum \bfU^{n+1}\bfU_f ^{n}\cdot\bfS_f$,转换为通量,这种方法除了线性化假定外还有$(\bfU\bfU)_f=\bfU_f \bfU_f$

    第一种是把$\nabla\cdot\bfU^{n+1}\bfU^{n+1}$展开了

    9月CFD算法编程课: http://dyfluid.com/class.html

    需要帮助debug算例的看这个 https://cfd-china.com/topic/8018

    1 Reply Last reply
  • L Offline
    L Offline
    LuoS
    wrote on last edited by
    #3

    谢谢李老师

    1 Reply Last reply

  • Login

  • Login or register to search.
  • First post
    Last post
0
  • 最新
  • Categories
  • 东岳流体
  • 随机看[请狂点我]