关于《icoFOAM解析》的一些疑问
- 
							
							
							
							
以公式(19)作为理解的主体,操作过程为:(19)扣掉(18)->运用忽略临点影响假设,(19)再扣掉一项->(19)再次加上(18),具体过程如下: 1.公式(19)扣掉(18)推得(20), \begin{equation} 
 A_P \underbrace { \left( \vec U_P^{n+1} - \vec U_P^r \right) }_{U'_P}
 +\sum A_N \overbrace{\left( \vec U^{n+1}-\vec U^{n}\right) }^{U'_N}
 = -\sum\overbrace{\left(p_f^{n+1} - p_f^n \right)}^{p'_f}\vec S_f
 \end{equation}2.引入忽略临点假设后,LHS第二项被消除,有 \begin{equation} 
 A_P \overbrace { \left( \vec U_P^{n+1} - \vec U_P^r \right) }^{U'_P}
 =-\sum \overbrace{\left( p_f^{n+1} - p_f^n \right)}^{p'_f} \vec S_f
 \end{equation}3.再加上(18),下式中标绿的部分为(18) \begin{equation} 
 A_P \overbrace { \left( \vec U_P^{n+1} - \vec U_P^r \right) }^{U'_P} + \color{green} {A_P \vec U_P^r}
 +\color{green}{\sum A_N \vec U_N^r}
 =-\sum \overbrace{\left( p_f^{n+1} - p_f^n \right)}^{p'_f} \vec S_f \color{green}{ -\sum p_f^n \vec S_f
 +S_P^n} \
 \rightarrow\
 A_P \overbrace { \vec U_P^{n+1} }^{\color{red}{U^*_P}}
 +\color{green}{\sum A_N \vec U_N^r}
 =-\sum \underbrace{ p_f^{n+1} }_{\color{red}{p^{*}_f}} \vec S_f
 +\color{green}{S_P^n}
 \end{equation}对比操作前后的变化, 
 操作前,
 \begin{equation*}
 A_P \vec U_P^{n+1}
 +\color{green} {\sum A_N \vec U_N^{n+1}}
 =S_P^n
 -\sum p_f^{n+1} \vec S_f
 \end{equation*}
 操作后,
 \begin{equation*}
 A_P \underbrace { \vec U_P^{n+1} }_{\color{red}{U^{*}_P}}
 +\color{green}{\sum A_N \vec U_N^r}
 =S_P^n-\sum \underbrace{ p_f^{n+1} }_{\color{red}{p^*_f}} \vec S_f
 \end{equation*}结论:1.带星的符号和带撇的符号,是同一个量; 
 2.上述操作主要是用预测量(上标$r$)替换了最终收敛量(上标$n+1$)上述理解是否正确? 
 
			