LES一个方程
-
整理一下
%(#ff0000)[问题:证明均一湍流有$S^2=\frac{1}{2}\left(\frac{\p u_i}{\p x_j}\right)^2$]
推导:
为方便讨论,考虑二维情况,
\begin{equation}
S^2=S_{ij}S_{ij}
\label{1}
\end{equation}
\begin{equation}
S_{ij}=\frac{1}{2}\left(\frac{\p u_i}{\p x_j}+\frac{\p u_j}{\p x_i}\right)
\label{2}
\end{equation}
将方程\eqref{2}代入到\eqref{1}有
\begin{equation}
S^2=S_{ij}S_{ij}=S_{11}S_{11}+S_{12}S_{12}+S_{21}S_{21}+S_{22}S_{22}
\label{3}
\end{equation}
\begin{equation}
=\left(\frac{\p u_1}{\p x_1}\right)^2+\frac{1}{4}\left(\frac{\p u_1}{\p x_2}+\frac{\p u_2}{\p x_1}\right)^2+\frac{1}{4}\left(\frac{\p u_1}{\p x_2}+\frac{\p u_2}{\p x_1}\right)^2+\left(\frac{\p u_2}{\p x_2}\right)^2
\label{4}
\end{equation}
\begin{equation}
=\left(\frac{\p u_1}{\p x_1}\right)^2+\frac{1}{2}\left(\frac{\p u_1}{\p x_2}+\frac{\p u_2}{\p x_1}\right)^2+\left(\frac{\p u_2}{\p x_2}\right)^2
\label{5}
\end{equation}
\begin{equation}
=\left(\frac{\p u_1}{\p x_1}\right)^2
+\frac{1}{2}\left( \left(\frac{\p u_1}{\p x_2}\right)^2 +2\frac{\p u_1}{\p x_2}\frac{\p u_2}{\p x_1} + \left(\frac{\p u_2}{\p x_1}\right)^2\right)
+\left(\frac{\p u_2}{\p x_2}\right)^2
\label{6}
\end{equation}
\begin{equation}
=\left(\frac{\p u_1}{\p x_1}\right)^2+\frac{1}{2}\left(\frac{\p u_1}{\p x_2}\right)^2+\frac{\p u_1}{\p x_2}\frac{\p u_2}{\p x_1}+\frac{1}{2}\left(\frac{\p u_2}{\p x_1}\right)^2
+\left(\frac{\p u_2}{\p x_2}\right)^2
\label{7}
\end{equation}