一个关于K方程SGS模型的问题:
-
在OF3.0中,K方程的代码如下:
tmp<fvScalarMatrix> kEqn ( fvm::ddt(alpha, rho, k_) + fvm::div(alphaRhoPhi, k_) - fvm::laplacian(alpha*rho*DkEff(), k_) == alpha*rho*G - fvm::SuSp((2.0/3.0)*alpha*rho*divU, k_) - fvm::Sp(this->Ce_*alpha*rho*sqrt(k_)/this->delta(), k_) + kSource() );
其中扩散项
fvm::laplacian(alpha*rho*DkEff(), k_)
而
tmp<volScalarField> DkEff() const { return tmp<volScalarField> ( new volScalarField("DkEff", this->nut_ + this->nu()) ); }
简单地说,就是K方程的扩散项粘度用的是 nut+nu。
这里的nut:this->nut_ = Ck_*sqrt(k_)*this->delta();
但是,在文献Menon S, Yeung P K, Kim W W. Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence[J]. Computers & Fluids, 1996, 25(2):165–180.中,公式却是这样的:
扩散项粘度用的是 nut。
有人知道怎么回事吗? -
Description One equation eddy-viscosity model Eddy viscosity SGS model using a modeled balance equation to simulate the behaviour of k. Reference: \verbatim Yoshizawa, A. (1986). Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Physics of Fluids (1958-1988), 29(7), 2152-2164. \endverbatim The default model coefficients are \verbatim kEqnCoeffs { Ck 0.094; Ce 1.048; } \endverbatim SourceFiles kEqn.C
我建议参考Yoshizawa, A. (1986).年的文章来验证。有可能Menon S. 1996年的文章和这个文献不同。