动量方程中viscous term的离散,书里写的有点问题?
- 
							
							
							
							
《The finite volume in computational fluid dynamics》中,$\nabla\mathbf v$写成 \begin{equation} 
 \nabla \mathbf{v} = \left[
 \begin{matrix}
 \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} & \frac{\partial w}{\partial x}\\
 \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} & \frac{\partial w}{\partial y} \\
 \frac{\partial u}{\partial z} & \frac{\partial v}{\partial z} & \frac{\partial w}{\partial z}\\
 \end{matrix}
 \right]
 \end{equation}
 在书中15.5.1节对SIMPLE的推导中,把$\nabla\cdot\{\mu\nabla\mathbf v\}$作为扩散项离散,把$\nabla\cdot\{\mu(\nabla\mathbf v)^\top\}$作为源项处理,是不是弄反了?
- 
							
							
							
							
							
							
@李东岳  
 问题可能在这儿,Moukalled书p589这两个式子有问题,应该像下面这样写:\begin{equation} 
 \int_\limits{V_C}\nabla\cdot\{\mu(\nabla\mathbf{v})^\top\}dV=\sum_\limits{f\sim nb(C)}\mathbf{S}_f\cdot\{\mu(\nabla\mathbf{v})_f^\top\}
 \end{equation}\begin{equation} 
 \mathbf{S}_f\cdot\{\mu(\nabla\mathbf{v})^\top_f\} = \left[
 \begin{matrix}
 \frac{\partial u}{\partial x}S_f^x + \frac{\partial v}{\partial x}S_f^y + \frac{\partial w}{\partial x}S_f^z\\
 \frac{\partial u}{\partial y}S_f^x + \frac{\partial v}{\partial y}S_f^y + \frac{\partial w}{\partial y}S_f^z \\
 \frac{\partial u}{\partial z}S_f^x + \frac{\partial v}{\partial z}S_f^y + \frac{\partial w}{\partial z}S_f^z\\
 \end{matrix}
 \right]
 \end{equation}就是说,把$\nabla\cdot\{\mu\nabla\mathbf v\}$作为diffusion,把$\nabla\cdot\{\mu(\nabla\mathbf v)^\top\}$作为source处理是对的。diffusion term用高斯定理积分后应该是 \begin{equation} 
 \int_\limits{V_C}\nabla\cdot\{\mu(\nabla\mathbf{v})\}dV=\sum_\limits{f\sim nb(C)}\mathbf{S}_f\cdot\{\mu(\nabla\mathbf{v})\}
 \end{equation}\begin{equation} 
 \mathbf{S}_f\cdot\{\mu(\nabla\mathbf{v})\} = \left[
 \begin{matrix}
 \frac{\partial u}{\partial x}S_f^x + \frac{\partial u}{\partial y}S_f^y + \frac{\partial u}{\partial z}S_f^z\\
 \frac{\partial v}{\partial x}S_f^x + \frac{\partial v}{\partial y}S_f^y + \frac{\partial v}{\partial z}S_f^z \\
 \frac{\partial w}{\partial x}S_f^x + \frac{\partial w}{\partial y}S_f^y + \frac{\partial w}{\partial z}S_f^z\\
 \end{matrix}
 \right]
 \end{equation}$\nabla\cdot\{\mu\nabla\mathbf v\}$和(5)的第$i$分量分别和Ferziger的Computational Method for Fluid Dynamics p185式(7.8)的微分形式和积分形式一致。  
 其中
 \begin{equation}
 \nabla u_i\cdot\mathbf ndS=\frac{\partial u_i}{\partial x}S_f^x + \frac{\partial u_i}{\partial y}S_f^y + \frac{\partial u_i}{\partial z}S_f^z
 \end{equation}
 总结,$\nabla\cdot\{\mu\nabla\mathbf v\}$是扩散项没问题,可以应用中心差分等数值格式计算。Moukalled书p589的式(15.65)张量形式的高斯定理写错了,$\mathbf{a}\cdot\{\tau\}$写成了$\{\tau\}\cdot\mathbf{a}$,式(15.66)展开成分量也就跟着错了。麻烦大佬看看我理解的对不对?
- 
							
							
							
							
							
							
@李东岳 感谢大佬回复,我说的可能有点乱,核心问题就是,$\nabla\cdot\{\tau\}$拆成两部分: \begin{equation} 
 \begin{aligned}
 &\int_\limits{V_C}\nabla\cdot\{\tau\}dV\\
 =&\int_\limits{V_C}\nabla\cdot\{\mu\nabla\mathbf v\}dV+\int_\limits{V_C}\nabla\cdot\{\mu(\nabla\mathbf v)^\top\}dV\\
 =&\sum\limits_f\Box\cdot\mathbf{S}_f+\sum\limits_f\Box\cdot\mathbf{S}_f
 \end{aligned}
 \end{equation}不管$\Box$里面是分子布局还是分母布局,反正可以得到下面两项: \begin{equation} 
 \sum\limits_f\Box\cdot\mathbf{S}_f=\sum\limits_f\left[
 \begin{matrix}
 \frac{\partial u}{\partial x}S_f^x + \frac{\partial u}{\partial y}S_f^y + \frac{\partial u}{\partial z}S_f^z\\
 \frac{\partial v}{\partial x}S_f^x + \frac{\partial v}{\partial y}S_f^y + \frac{\partial v}{\partial z}S_f^z \\
 \frac{\partial w}{\partial x}S_f^x + \frac{\partial w}{\partial y}S_f^y + \frac{\partial w}{\partial z}S_f^z\\
 \end{matrix}
 \right]
 \end{equation}\begin{equation} 
 \sum\limits_f\Box\cdot\mathbf{S}_f=\sum\limits_f\left[
 \begin{matrix}
 \frac{\partial u}{\partial x}S_f^x + \frac{\partial v}{\partial x}S_f^y + \frac{\partial w}{\partial x}S_f^z\\
 \frac{\partial u}{\partial y}S_f^x + \frac{\partial v}{\partial y}S_f^y + \frac{\partial w}{\partial y}S_f^z \\
 \frac{\partial u}{\partial z}S_f^x + \frac{\partial v}{\partial z}S_f^y + \frac{\partial w}{\partial z}S_f^z\\
 \end{matrix}
 \right]
 \end{equation}应该是前面一个,式(8)作为diffusion处理,对每个分量都有$\nabla\phi\cdot\mathbf S_f=\frac{\phi_F-\phi_C}{d_{CF}}S_f$(正交网格)。是这样吗? 
 
			
