关于《icoFOAM解析》的一些疑问
-
以公式(19)作为理解的主体,操作过程为:(19)扣掉(18)->运用忽略临点影响假设,(19)再扣掉一项->(19)再次加上(18),具体过程如下:
1.公式(19)扣掉(18)推得(20),
\begin{equation}
A_P \underbrace { \left( \vec U_P^{n+1} - \vec U_P^r \right) }_{U'_P}
+\sum A_N \overbrace{\left( \vec U^{n+1}-\vec U^{n}\right) }^{U'_N}
= -\sum\overbrace{\left(p_f^{n+1} - p_f^n \right)}^{p'_f}\vec S_f
\end{equation}2.引入忽略临点假设后,LHS第二项被消除,有
\begin{equation}
A_P \overbrace { \left( \vec U_P^{n+1} - \vec U_P^r \right) }^{U'_P}
=-\sum \overbrace{\left( p_f^{n+1} - p_f^n \right)}^{p'_f} \vec S_f
\end{equation}3.再加上(18),下式中标绿的部分为(18)
\begin{equation}
A_P \overbrace { \left( \vec U_P^{n+1} - \vec U_P^r \right) }^{U'_P} + \color{green} {A_P \vec U_P^r}
+\color{green}{\sum A_N \vec U_N^r}
=-\sum \overbrace{\left( p_f^{n+1} - p_f^n \right)}^{p'_f} \vec S_f \color{green}{ -\sum p_f^n \vec S_f
+S_P^n} \
\rightarrow\
A_P \overbrace { \vec U_P^{n+1} }^{\color{red}{U^*_P}}
+\color{green}{\sum A_N \vec U_N^r}
=-\sum \underbrace{ p_f^{n+1} }_{\color{red}{p^{*}_f}} \vec S_f
+\color{green}{S_P^n}
\end{equation}对比操作前后的变化,
操作前,
\begin{equation*}
A_P \vec U_P^{n+1}
+\color{green} {\sum A_N \vec U_N^{n+1}}
=S_P^n
-\sum p_f^{n+1} \vec S_f
\end{equation*}
操作后,
\begin{equation*}
A_P \underbrace { \vec U_P^{n+1} }_{\color{red}{U^{*}_P}}
+\color{green}{\sum A_N \vec U_N^r}
=S_P^n-\sum \underbrace{ p_f^{n+1} }_{\color{red}{p^*_f}} \vec S_f
\end{equation*}结论:1.带星的符号和带撇的符号,是同一个量;
2.上述操作主要是用预测量(上标$r$)替换了最终收敛量(上标$n+1$)上述理解是否正确?