如果用DPMFoam求解稀相流会怎么样?误差大么
-
这俩套方程都是文献中看到的,可以参考本帖24楼。我自己的求解器中采用这种形式
\begin{equation}
m_\mathrm{dpm}\frac{\partial \mathbf{U}_ \mathrm{dpm}}{\partial t}=\mathbf{F}_ \mathrm{drag}+m_\mathrm{dpm}\mathbf{g}+\frac{m_\mathrm{dpm}}{\rho_\mathrm{dpm}}\nabla p_\mathrm{c}+\mathrm{Others}
\end{equation}俩种形式可以互相转换。依据$p=p_0+\rho_\rc \bfg\bfh$即可相互推导
-
\begin{equation}
\label{DPM} m_\dpm\frac{\rd \bfU_\dpm}{\rd t}=-\frac{m_\dpm}{\rho_\dpm}\nabla p+m_\dpm\bfg+\frac{m_\dpm}{\rho_\dpm}\frac{3}{4}\frac{C_\rD\rho_\rc}{d_\rd}\left|\bfU_\rc-\bfU_\dpm\right|\left(\bfU_\rc-\bfU_\dpm\right)+\mathrm{OtherForces}.
\end{equation}
伯努利:
\begin{equation}
\label{bnl} \nabla p=\rho_\rc\bfg
\end{equation}
代入:
\begin{equation}
\label{DPM3} m_\dpm\frac{\rd \bfU_\dpm}{\rd t}=m_\dpm\bfg\left(1-\frac{\rho_\rc}{\rho_\dpm}\right)+\frac{m_\dpm}{\rho_\dpm}\frac{3}{4}\frac{C_\rD\rho_\rc}{d_\rd}\left|\bfU_\rc-\bfU_\dpm\right|\left(\bfU_\rc-\bfU_\dpm\right)+\mathrm{OtherForces}.
\end{equation}
-